The Stacks project

Lemma 10.32.4. Let $R$ be a ring and let $I \subset R$ be a locally nilpotent ideal. An element $x$ of $R$ is a unit if and only if the image of $x$ in $R/I$ is a unit.

Proof. If $x$ is a unit in $R$, then its image is clearly a unit in $R/I$. It remains to prove the converse. Assume the image of $y \in R$ in $R/I$ is the inverse of the image of $x$. Then $xy = 1 - z$ for some $z \in I$. This means that $1\equiv z$ modulo $xR$. Since $z$ lies in the locally nilpotent ideal $I$, we have $z^ N = 0$ for some sufficiently large $N$. It follows that $1 = 1^ N \equiv z^ N = 0$ modulo $xR$. In other words, $x$ divides $1$ and is hence a unit. $\square$


Comments (2)

Comment #3629 by Rene Schoof on

Then for some . This means that modulo . Since lies in the locally nilpotent ideal , we have for some sufficiently large . It follows that modulo . In other words, divides and is hence a unit.

Comment #3729 by on

Hahaha! Yes, this is quite a bit better. Thank you. Changes can be found here.

There are also:

  • 2 comment(s) on Section 10.32: Locally nilpotent ideals

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0AMG. Beware of the difference between the letter 'O' and the digit '0'.