Lemma 10.19.1. Let $R$ be a ring with Jacobson radical $\text{rad}(R)$. Let $I \subset R$ be an ideal. The following are equivalent
$I \subset \text{rad}(R)$, and
every element of $1 + I$ is a unit in $R$.
We recall that the Jacobson radical $\text{rad}(R)$ of a ring $R$ is the intersection of all maximal ideals of $R$. If $R$ is local then $\text{rad}(R)$ is the maximal ideal of $R$.
Lemma 10.19.1. Let $R$ be a ring with Jacobson radical $\text{rad}(R)$. Let $I \subset R$ be an ideal. The following are equivalent
$I \subset \text{rad}(R)$, and
every element of $1 + I$ is a unit in $R$.
In this case every element of $R$ which maps to a unit of $R/I$ is a unit.
Proof. If $f \in \text{rad}(R)$, then $f \in \mathfrak m$ for all maximal ideals $\mathfrak m$ of $R$. Hence $1 + f \not\in \mathfrak m$ for all maximal ideals $\mathfrak m$ of $R$. Thus the closed subset $V(1 + f)$ of $\mathop{\mathrm{Spec}}(R)$ is empty. This implies that $1 + f$ is a unit, see Lemma 10.17.2.
Conversely, assume that $1 + f$ is a unit for all $f \in I$. If $\mathfrak m$ is a maximal ideal and $I \not\subset \mathfrak m$, then $I + \mathfrak m = R$. Hence $1 = f + g$ for some $g \in \mathfrak m$ and $f \in I$. Then $g = 1 + (-f)$ is not a unit, contradiction.
For the final statement let $f \in R$ map to a unit in $R/I$. Then we can find $g \in R$ mapping to the multiplicative inverse of $f \bmod I$. Then $fg = 1 \bmod I$. Hence $fg$ is a unit of $R$ by (2) which implies that $f$ is a unit. $\square$
Lemma 10.19.2. Let $\varphi : R \to S$ be a ring map such that the induced map $\mathop{\mathrm{Spec}}(S) \to \mathop{\mathrm{Spec}}(R)$ is surjective. Then an element $x \in R$ is a unit if and only if $\varphi (x) \in S$ is a unit.
Proof. If $x$ is a unit, then so is $\varphi (x)$. Conversely, if $\varphi (x)$ is a unit, then $\varphi (x) \not\in \mathfrak q$ for all $\mathfrak q \in \mathop{\mathrm{Spec}}(S)$. Hence $x \not\in \varphi ^{-1}(\mathfrak q) = \mathop{\mathrm{Spec}}(\varphi )(\mathfrak q)$ for all $\mathfrak q \in \mathop{\mathrm{Spec}}(S)$. Since $\mathop{\mathrm{Spec}}(\varphi )$ is surjective we conclude that $x$ is a unit by part (17) of Lemma 10.17.2. $\square$
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (2)
Comment #3650 by Brian Conrad on
Comment #3746 by Johan on