Lemma 59.69.2. Let $\pi : X \to Y$ be a nonconstant morphism of smooth projective curves over an algebraically closed field $k$ and let $n \geq 1$ be invertible in $k$. The map
is given by multiplication by the degree of $\pi $.
Lemma 59.69.2. Let $\pi : X \to Y$ be a nonconstant morphism of smooth projective curves over an algebraically closed field $k$ and let $n \geq 1$ be invertible in $k$. The map
is given by multiplication by the degree of $\pi $.
Proof. Observe that the statement makes sense as we have identified both cohomology groups $ H^2_{\acute{e}tale}(Y, \mu _ n)$ and $H^2_{\acute{e}tale}(X, \mu _ n)$ with $\mathbf{Z}/n\mathbf{Z}$ in Lemma 59.69.1. In fact, if $\mathcal{L}$ is a line bundle of degree $1$ on $Y$ with class $[\mathcal{L}] \in H^1_{\acute{e}tale}(Y, \mathbf{G}_ m)$, then the coboundary of $[\mathcal{L}]$ is the generator of $H^2_{\acute{e}tale}(Y, \mu _ n)$. Here the coboundary is the coboundary of the long exact sequence of cohomology associated to the Kummer sequence. Thus the result of the lemma follows from the fact that the degree of the line bundle $\pi ^*\mathcal{L}$ on $X$ is $\deg (\pi )$. Some details omitted. $\square$
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)