The Stacks project

Lemma 59.69.1. Let $X$ be a smooth projective curve of genus $g$ over an algebraically closed field $k$ and let $n \geq 1$ be invertible in $k$. Then there are canonical identifications

\[ H_{\acute{e}tale}^ q(X, \mu _ n) = \left\{ \begin{matrix} \mu _ n(k) & \text{ if }q = 0, \\ \mathop{\mathrm{Pic}}\nolimits ^0(X)[n] & \text{ if }q = 1, \\ \mathbf{Z}/n\mathbf{Z} & \text{ if }q = 2, \\ 0 & \text{ if }q \geq 3. \end{matrix} \right. \]

Since $\mu _ n \cong \underline{\mathbf{Z}/n\mathbf{Z}}$, this gives (noncanonical) identifications

\[ H_{\acute{e}tale}^ q(X, \underline{\mathbf{Z}/n\mathbf{Z}}) \cong \left\{ \begin{matrix} \mathbf{Z}/n\mathbf{Z} & \text{ if }q = 0, \\ (\mathbf{Z}/n\mathbf{Z})^{2g} & \text{ if }q = 1, \\ \mathbf{Z}/n\mathbf{Z} & \text{ if }q = 2, \\ 0 & \text{ if }q \geq 3. \end{matrix} \right. \]

Proof. Theorems 59.24.1 and 59.68.5 determine the étale cohomology of $\mathbf{G}_ m$ on $X$ in terms of the Picard group of $X$. The Kummer sequence $0\to \mu _{n, X} \to \mathbf{G}_{m, X} \to \mathbf{G}_{m, X}\to 0$ (Lemma 59.28.1) then gives us the long exact cohomology sequence

\[ \xymatrix{ 0 \ar[r] & \mu _ n(k) \ar[r] & k^* \ar[r]^{(\cdot )^ n} & k^* \ar@(rd, ul)[rdllllr] \\ & H_{\acute{e}tale}^1(X, \mu _ n) \ar[r] & \mathop{\mathrm{Pic}}\nolimits (X) \ar[r]^{(\cdot )^ n} & \mathop{\mathrm{Pic}}\nolimits (X) \ar@(rd, ul)[rdllllr] \\ & H_{\acute{e}tale}^2(X, \mu _ n) \ar[r] & 0 \ar[r] & 0 \ldots } \]

The $n$th power map $k^* \to k^*$ is surjective since $k$ is algebraically closed. So we need to compute the kernel and cokernel of the map $n : \mathop{\mathrm{Pic}}\nolimits (X) \to \mathop{\mathrm{Pic}}\nolimits (X)$. Consider the commutative diagram with exact rows

\[ \xymatrix{ 0 \ar[r] & \mathop{\mathrm{Pic}}\nolimits ^0(X) \ar[r] \ar@{>>}[d]^{(\cdot )^ n} & \mathop{\mathrm{Pic}}\nolimits (X) \ar[r]_-\deg \ar[d]^{(\cdot )^ n} & \mathbf{Z} \ar[r] \ar@{^{(}->}[d]^ n & 0 \\ 0 \ar[r] & \mathop{\mathrm{Pic}}\nolimits ^0(X) \ar[r] & \mathop{\mathrm{Pic}}\nolimits (X) \ar[r]^-\deg & \mathbf{Z} \ar[r] & 0 } \]

The group $\mathop{\mathrm{Pic}}\nolimits ^0(X)$ is the $k$-points of the group scheme $\underline{\mathrm{Pic}}^0_{X/k}$, see Picard Schemes of Curves, Lemma 44.6.7. The same lemma tells us that $\underline{\mathrm{Pic}}^0_{X/k}$ is a $g$-dimensional abelian variety over $k$ as defined in Groupoids, Definition 39.9.1. Hence the left vertical map is surjective by Groupoids, Proposition 39.9.11. Applying the snake lemma gives canonical identifications as stated in the lemma.

To get the noncanonical identifications of the lemma we need to show the kernel of $n : \mathop{\mathrm{Pic}}\nolimits ^0(X) \to \mathop{\mathrm{Pic}}\nolimits ^0(X)$ is isomorphic to $(\mathbf{Z}/n\mathbf{Z})^{\oplus 2g}$. This is also part of Groupoids, Proposition 39.9.11. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 03RQ. Beware of the difference between the letter 'O' and the digit '0'.