The Stacks project

Lemma 48.15.1. Let $Y$ be a quasi-compact and quasi-separated scheme. Let $\mathcal{E}$ be a finite locally free $\mathcal{O}_ Y$-module of rank $n + 1$ with determinant $\mathcal{L} = \wedge ^{n + 1}(\mathcal{E})$. Let $f : X = \mathbf{P}(\mathcal{E}) \to Y$ be the projection. Let $a$ be the right adjoint for $Rf_* : D_\mathit{QCoh}(\mathcal{O}_ X) \to D_\mathit{QCoh}(\mathcal{O}_ Y)$ of Lemma 48.3.1. Then there is an isomorphism

\[ c : f^*\mathcal{L}(-n - 1)[n] \longrightarrow a(\mathcal{O}_ Y) \]

In particular, if $\mathcal{E} = \mathcal{O}_ Y^{\oplus n + 1}$, then $X = \mathbf{P}^ n_ Y$ and we obtain $a(\mathcal{O}_ Y) = \mathcal{O}_ X(-n - 1)[n]$.

Proof. In (the proof of) Cohomology of Schemes, Lemma 30.8.4 we constructed a canonical isomorphism

\[ R^ nf_*(f^*\mathcal{L}(-n - 1)) \longrightarrow \mathcal{O}_ Y \]

Moreover, $Rf_*(f^*\mathcal{L}(-n - 1))[n] = R^ nf_*(f^*\mathcal{L}(-n - 1))$, i.e., the other higher direct images are zero. Thus we find an isomorphism

\[ Rf_*(f^*\mathcal{L}(-n - 1)[n]) \longrightarrow \mathcal{O}_ Y \]

This isomorphism determines $c$ as in the statement of the lemma because $a$ is the right adjoint of $Rf_*$. By Lemma 48.4.4 construction of the $a$ is local on the base. In particular, to check that $c$ is an isomorphism, we may work locally on $Y$. In other words, we may assume $Y$ is affine and $\mathcal{E} = \mathcal{O}_ Y^{\oplus n + 1}$. In this case the sheaves $\mathcal{O}_ X, \mathcal{O}_ X(-1), \ldots , \mathcal{O}_ X(-n)$ generate $D_\mathit{QCoh}(X)$, see Derived Categories of Schemes, Lemma 36.16.3. Hence it suffices to show that $c : \mathcal{O}_ X(-n - 1)[n] \to a(\mathcal{O}_ Y)$ is transformed into an isomorphism under the functors

\[ F_{i, p}(-) = \mathop{\mathrm{Hom}}\nolimits _{D(\mathcal{O}_ X)}(\mathcal{O}_ X(i), (-)[p]) \]

for $i \in \{ -n, \ldots , 0\} $ and $p \in \mathbf{Z}$. For $F_{0, p}$ this holds by construction of the arrow $c$! For $i \in \{ -n, \ldots , -1\} $ we have

\[ \mathop{\mathrm{Hom}}\nolimits _{D(\mathcal{O}_ X)}(\mathcal{O}_ X(i), \mathcal{O}_ X(-n - 1)[n + p]) = H^ p(X, \mathcal{O}_ X(-n - 1 - i)) = 0 \]

by the computation of cohomology of projective space (Cohomology of Schemes, Lemma 30.8.1) and we have

\[ \mathop{\mathrm{Hom}}\nolimits _{D(\mathcal{O}_ X)}(\mathcal{O}_ X(i), a(\mathcal{O}_ Y)[p]) = \mathop{\mathrm{Hom}}\nolimits _{D(\mathcal{O}_ Y)}(Rf_*\mathcal{O}_ X(i), \mathcal{O}_ Y[p]) = 0 \]

because $Rf_*\mathcal{O}_ X(i) = 0$ by the same lemma. Hence the source and the target of $F_{i, p}(c)$ vanish and $F_{i, p}(c)$ is necessarily an isomorphism. This finishes the proof. $\square$


Comments (2)

Comment #8772 by Bogdan on

It seems that the proof never uses that is noetherian.


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0A9W. Beware of the difference between the letter 'O' and the digit '0'.