Lemma 30.8.1. Let $R$ be a ring. Let $n \geq 0$ be an integer. We have
as $R$-modules.
[III Proposition 2.1.12, EGA]
Lemma 30.8.1. Let $R$ be a ring. Let $n \geq 0$ be an integer. We have as $R$-modules.
Proof.
We will use the standard affine open covering
to compute the cohomology using the Čech complex. This is permissible by Lemma 30.2.6 since any intersection of finitely many affine $D_{+}(T_ i)$ is also a standard affine open (see Constructions, Section 27.8). In fact, we can use the alternating or ordered Čech complex according to Cohomology, Lemmas 20.23.3 and 20.23.6.
The ordering we will use on $\{ 0, \ldots , n\} $ is the usual one. Hence the complex we are looking at has terms
Moreover, the maps are given by the usual formula
see Cohomology, Section 20.23. Note that each term of this complex has a natural $\mathbf{Z}^{n + 1}$-grading. Namely, we get this by declaring a monomial $T_0^{e_0} \ldots T_ n^{e_ n}$ to be homogeneous with weight $(e_0, \ldots , e_ n) \in \mathbf{Z}^{n + 1}$. It is clear that the differential given above respects the grading. In a formula we have
where not all summands on the right hand side occur (see below). Hence in order to compute the cohomology modules of the complex it suffices to compute the cohomology of the graded pieces and take the direct sum at the end.
Fix $\vec{e} = (e_0, \ldots , e_ n) \in \mathbf{Z}^{n + 1}$. In order for this weight to occur in the complex above we need to assume $e_0 + \ldots + e_ n = d$ (if not then it occurs for a different twist of the structure sheaf of course). Assuming this, set
With this notation the weight $\vec{e}$ summand $\check{\mathcal{C}}^\bullet (\vec{e})$ of the Čech complex above has the following terms
In other words, the terms corresponding to $i_0 < \ldots < i_ p$ such that $NEG(\vec{e})$ is not contained in $\{ i_0 \ldots i_ p\} $ are zero. The differential of the complex $\check{\mathcal{C}}^\bullet (\vec{e})$ is still given by the exact same formula as above.
Suppose that $NEG(\vec{e}) = \{ 0, \ldots , n\} $, i.e., that all exponents $e_ i$ are negative. In this case the complex $\check{\mathcal{C}}^\bullet (\vec{e})$ has only one term, namely $\check{\mathcal{C}}^ n(\vec{e}) = R \cdot \frac{1}{T_0^{-e_0} \ldots T_ n^{-e_ n}}$. Hence in this case
The direct sum of all of these terms clearly gives the value
in degree $n$ as stated in the lemma. Moreover these terms do not contribute to cohomology in other degrees (also in accordance with the statement of the lemma).
Assume $NEG(\vec{e}) = \emptyset $. In this case the complex $\check{\mathcal{C}}^\bullet (\vec{e})$ has a summand $R$ corresponding to all $i_0 < \ldots < i_ p$. Let us compare the complex $\check{\mathcal{C}}^\bullet (\vec{e})$ to another complex. Namely, consider the affine open covering
where $V_ i = \mathop{\mathrm{Spec}}(R)$ for all $i$. Consider the alternating Čech complex
By the same reasoning as above this computes the cohomology of the structure sheaf on $\mathop{\mathrm{Spec}}(R)$. Hence we see that $H^ p( \check{\mathcal{C}}_{ord}^\bullet (\mathcal{V}, \mathcal{O}_{\mathop{\mathrm{Spec}}(R)}) ) = R$ if $p = 0$ and is $0$ whenever $p > 0$. For these facts, see Lemma 30.2.1 and its proof. Note that also $\check{\mathcal{C}}_{ord}^\bullet (\mathcal{V}, \mathcal{O}_{\mathop{\mathrm{Spec}}(R)})$ has a summand $R$ for every $i_0 < \ldots < i_ p$ and has exactly the same differential as $\check{\mathcal{C}}^\bullet (\vec{e})$. In other words these complexes are isomorphic complexes and hence have the same cohomology. We conclude that
in the case that $NEG(\vec{e}) = \emptyset $. The direct sum of all of these terms clearly gives the value
in degree $0$ as stated in the lemma. Moreover these terms do not contribute to cohomology in other degrees (also in accordance with the statement of the lemma).
To finish the proof of the lemma we have to show that the complexes $\check{\mathcal{C}}^\bullet (\vec{e})$ are acyclic when $NEG(\vec{e})$ is neither empty nor equal to $\{ 0, \ldots , n\} $. Pick an index $i_{\text{fix}} \not\in NEG(\vec{e})$ (such an index exists). Consider the map
given by the rule that for $i_0 < \ldots < i_ p$ we have
Please compare with the proof of Lemma 30.2.1. This makes sense because we have
The exact same (combinatorial) computation1 as in the proof of Lemma 30.2.1 shows that
Hence we see that the identity map of the complex $\check{\mathcal{C}}^\bullet (\vec{e})$ is homotopic to zero which implies that it is acyclic.
$\square$
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (9)
Comment #2696 by Zhang on
Comment #2731 by Takumi Murayama on
Comment #3244 by Aravind Asok on
Comment #3343 by Johan on
Comment #6667 by WhatJiaranEatsTonight on
Comment #6885 by Johan on
Comment #8743 by Zhenhua Wu on
Comment #9334 by Stacks project on
Comment #9540 by Willliam26 on