The Stacks project

Lemma 23.9.1. Let $A \to B$ be a local homomorphism of Noetherian complete local rings. The following are equivalent

  1. for some good factorization $A \to S \to B$ the kernel of $S \to B$ is generated by a regular sequence, and

  2. for every good factorization $A \to S \to B$ the kernel of $S \to B$ is generated by a regular sequence.

Proof. Let $A \to S \to B$ be a good factorization. As $B$ is complete we obtain a factorization $A \to S^\wedge \to B$ where $S^\wedge $ is the completion of $S$. Note that this is also a good factorization: The ring map $S \to S^\wedge $ is flat (Algebra, Lemma 10.97.2), hence $A \to S^\wedge $ is flat. The ring $S^\wedge /\mathfrak m_ A S^\wedge = (S/\mathfrak m_ A S)^\wedge $ is regular since $S/\mathfrak m_ A S$ is regular (More on Algebra, Lemma 15.43.4). Let $f_1, \ldots , f_ r$ be a minimal sequence of generators of $\mathop{\mathrm{Ker}}(S \to B)$. We will use without further mention that an ideal in a Noetherian local ring is generated by a regular sequence if and only if any minimal set of generators is a regular sequence. Observe that $f_1, \ldots , f_ r$ is a regular sequence in $S$ if and only if $f_1, \ldots , f_ r$ is a regular sequence in the completion $S^\wedge $ by Algebra, Lemma 10.68.5. Moreover, we have

\[ S^\wedge /(f_1, \ldots , f_ r)R^\wedge = (S/(f_1, \ldots , f_ n))^\wedge = B^\wedge = B \]

because $B$ is $\mathfrak m_ B$-adically complete (first equality by Algebra, Lemma 10.97.1). Thus the kernel of $S \to B$ is generated by a regular sequence if and only if the kernel of $S^\wedge \to B$ is generated by a regular sequence. Hence it suffices to consider good factorizations where $S$ is complete.

Assume we have two factorizations $A \to S \to B$ and $A \to S' \to B$ with $S$ and $S'$ complete. By More on Algebra, Lemma 15.39.4 the ring $S \times _ B S'$ is a Noetherian complete local ring. Hence, using More on Algebra, Lemma 15.39.3 we can choose a good factorization $A \to S'' \to S \times _ B S'$ with $S''$ complete. Thus it suffices to show: If $A \to S' \to S \to B$ are comparable good factorizations, then $\mathop{\mathrm{Ker}}(S \to B)$ is generated by a regular sequence if and only if $\mathop{\mathrm{Ker}}(S' \to B)$ is generated by a regular sequence.

Let $A \to S' \to S \to B$ be comparable good factorizations. First, since $S'/\mathfrak m_ R S' \to S/\mathfrak m_ R S$ is a surjection of regular local rings, the kernel is generated by a regular sequence $\overline{x}_1, \ldots , \overline{x}_ c \in \mathfrak m_{S'}/\mathfrak m_ R S'$ which can be extended to a regular system of parameters for the regular local ring $S'/\mathfrak m_ R S'$, see (Algebra, Lemma 10.106.4). Set $I = \mathop{\mathrm{Ker}}(S' \to S)$. By flatness of $S$ over $R$ we have

\[ I/\mathfrak m_ R I = \mathop{\mathrm{Ker}}(S'/\mathfrak m_ R S' \to S/\mathfrak m_ R S) = (\overline{x}_1, \ldots , \overline{x}_ c). \]

Choose lifts $x_1, \ldots , x_ c \in I$. These lifts form a regular sequence generating $I$ as $S'$ is flat over $R$, see Algebra, Lemma 10.99.3.

We conclude that if also $\mathop{\mathrm{Ker}}(S \to B)$ is generated by a regular sequence, then so is $\mathop{\mathrm{Ker}}(S' \to B)$, see More on Algebra, Lemmas 15.30.13 and 15.30.7.

Conversely, assume that $J = \mathop{\mathrm{Ker}}(S' \to B)$ is generated by a regular sequence. Because the generators $x_1, \ldots , x_ c$ of $I$ map to linearly independent elements of $\mathfrak m_{S'}/\mathfrak m_{S'}^2$ we see that $I/\mathfrak m_{S'}I \to J/\mathfrak m_{S'}J$ is injective. Hence there exists a minimal system of generators $x_1, \ldots , x_ c, y_1, \ldots , y_ d$ for $J$. Then $x_1, \ldots , x_ c, y_1, \ldots , y_ d$ is a regular sequence and it follows that the images of $y_1, \ldots , y_ d$ in $S$ form a regular sequence generating $\mathop{\mathrm{Ker}}(S \to B)$. This finishes the proof of the lemma. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 09QA. Beware of the difference between the letter 'O' and the digit '0'.