Lemma 92.15.1. If $A$ and $B$ are Tor independent $R$-algebras, then the object $E$ in (92.15.0.1) is zero. In this case we have
which is represented by the complex $L_{A/R} \otimes _ R B \oplus L_{B/R} \otimes _ R A $ of $A \otimes _ R B$-modules.
Lemma 92.15.1. If $A$ and $B$ are Tor independent $R$-algebras, then the object $E$ in (92.15.0.1) is zero. In this case we have
which is represented by the complex $L_{A/R} \otimes _ R B \oplus L_{B/R} \otimes _ R A $ of $A \otimes _ R B$-modules.
Proof. The first two statements are immediate from Lemma 92.6.2. The last statement follows as $L_{A/R}$ is a complex of free $A$-modules, hence $L_{A/R} \otimes _ A^\mathbf {L} (A \otimes _ R B)$ is represented by $L_{A/R} \otimes _ A (A \otimes _ R B) = L_{A/R} \otimes _ R B$ $\square$
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)