Lemma 52.6.1. Let $(\mathcal{C}, \mathcal{O})$ be a ringed site. Let $f$ be a global section of $\mathcal{O}$.
For $L, N \in D(\mathcal{O}_ f)$ we have $R\mathop{\mathcal{H}\! \mathit{om}}\nolimits _\mathcal {O}(L, N) = R\mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_ f}(L, N)$. In particular the two $\mathcal{O}_ f$-structures on $R\mathop{\mathcal{H}\! \mathit{om}}\nolimits _\mathcal {O}(L, N)$ agree.
For $K \in D(\mathcal{O})$ and $L \in D(\mathcal{O}_ f)$ we have
\[ R\mathop{\mathcal{H}\! \mathit{om}}\nolimits _\mathcal {O}(L, K) = R\mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_ f}(L, R\mathop{\mathcal{H}\! \mathit{om}}\nolimits _\mathcal {O}(\mathcal{O}_ f, K)) \]In particular $R\mathop{\mathcal{H}\! \mathit{om}}\nolimits _\mathcal {O}(\mathcal{O}_ f, R\mathop{\mathcal{H}\! \mathit{om}}\nolimits _\mathcal {O}(\mathcal{O}_ f, K)) = R\mathop{\mathcal{H}\! \mathit{om}}\nolimits _\mathcal {O}(\mathcal{O}_ f, K)$.
If $g$ is a second global section of $\mathcal{O}$, then
\[ R\mathop{\mathcal{H}\! \mathit{om}}\nolimits _\mathcal {O}(\mathcal{O}_ f, R\mathop{\mathcal{H}\! \mathit{om}}\nolimits _\mathcal {O}(\mathcal{O}_ g, K)) = R\mathop{\mathcal{H}\! \mathit{om}}\nolimits _\mathcal {O}(\mathcal{O}_{gf}, K). \]
Comments (0)
There are also: