Lemma 21.20.11. Let $\mathcal{C}$ be a site. Let $\mathcal{O} \to \mathcal{O}'$ be a map of sheaves of rings. If $\mathcal{I}^\bullet $ is a K-injective complex of $\mathcal{O}$-modules, then $\mathop{\mathcal{H}\! \mathit{om}}\nolimits _\mathcal {O}(\mathcal{O}', \mathcal{I}^\bullet )$ is a K-injective complex of $\mathcal{O}'$-modules.
Proof. This is true because $\mathop{\mathrm{Hom}}\nolimits _{K(\mathcal{O}')}(\mathcal{G}^\bullet , \mathop{\mathrm{Hom}}\nolimits _\mathcal {O}(\mathcal{O}', \mathcal{I}^\bullet )) = \mathop{\mathrm{Hom}}\nolimits _{K(\mathcal{O})}(\mathcal{G}^\bullet , \mathcal{I}^\bullet )$ by Modules on Sites, Lemma 18.27.8. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (2)
Comment #2117 by Kestutis Cesnavicius on
Comment #2137 by Johan on