7.45 Pullback maps
It sometimes happens that a site $\mathcal{C}$ does not have a final object. In this case we define the global section functor as follows.
Definition 7.45.1. The global sections of a presheaf of sets $\mathcal{F}$ over a site $\mathcal{C}$ is the set
\[ \Gamma (\mathcal{C}, \mathcal{F}) = \mathop{\mathrm{Mor}}\nolimits _{\textit{PSh}(\mathcal{C})}(*, \mathcal{F}) \]
where $*$ is the final object in the category of presheaves on $\mathcal{C}$, i.e., the presheaf which associates to every object a singleton.
Of course the same definition applies to sheaves as well. Here is one way to compute global sections.
Lemma 7.45.2. Let $\mathcal{C}$ be a site. Let $a, b : V \to U$ be objects of $\mathcal{C}$ such that
\[ \xymatrix{ h_ V^\# \ar@<1ex>[r] \ar@<-1ex>[r] & h_ U^\# \ar[r] & {*} } \]
is a coequalizer in $\mathop{\mathit{Sh}}\nolimits (\mathcal{C})$. Then $\Gamma (\mathcal{C}, \mathcal{F})$ is the equalizer of $a^*, b^* : \mathcal{F}(U) \to \mathcal{F}(V)$.
Proof.
Since $\mathop{\mathrm{Mor}}\nolimits _{\mathop{\mathit{Sh}}\nolimits (\mathcal{C})}(h_ U^\# , \mathcal{F}) = \mathcal{F}(U)$ this is clear from the definitions.
$\square$
Now, let $f : \mathop{\mathit{Sh}}\nolimits (\mathcal{D}) \to \mathop{\mathit{Sh}}\nolimits (\mathcal{C})$ be a morphism of topoi. Then for any sheaf $\mathcal{F}$ on $\mathcal{C}$ there is a pullback map
\[ f^{-1} : \Gamma (\mathcal{C}, \mathcal{F}) \longrightarrow \Gamma (\mathcal{D}, f^{-1}\mathcal{F}) \]
Namely, as $f^{-1}$ is exact it transforms $*$ into $*$. Hence a global section $s$ of $\mathcal{F}$ over $\mathcal{C}$, which is a map of sheaves $s : * \to \mathcal{F}$, can be pulled back to $f^{-1}s : * = f^{-1}* \to f^{-1}\mathcal{F}$.
We can generalize this a bit by considering a pair of sheaves $\mathcal{F}$, $\mathcal{G}$ on $\mathcal{C}$, $\mathcal{D}$ together with a map $f^{-1}\mathcal{F} \to \mathcal{G}$. Then we compose the construction above with the obvious map $\Gamma (\mathcal{D}, f^{-1}\mathcal{F}) \to \Gamma (\mathcal{D}, \mathcal{G})$ to get a map
\[ \Gamma (\mathcal{C}, \mathcal{F}) \longrightarrow \Gamma (\mathcal{D}, \mathcal{G}) \]
This map is sometimes also called a pullback map.
A slightly more general construction which occurs frequently in nature is the following. Suppose that we have a commutative diagram of morphisms of topoi
\[ \xymatrix{ \mathop{\mathit{Sh}}\nolimits (\mathcal{D}) \ar[rd]_ h \ar[rr]_ f & & \mathop{\mathit{Sh}}\nolimits (\mathcal{C}) \ar[ld]^ g \\ & \mathop{\mathit{Sh}}\nolimits (\mathcal{B}) } \]
Next, suppose that we have a sheaf $\mathcal{F}$ on $\mathcal{C}$. Then there is a pullback map
\[ f^{-1} : g_*\mathcal{F} \longrightarrow h_*f^{-1}\mathcal{F} \]
Namely, it is just the map coming from the identification $g_*f_*f^{-1}\mathcal{F} = h_*f^{-1}\mathcal{F}$ together with $g_*$ applied to the canonical map $\mathcal{F} \to f_*f^{-1}\mathcal{F}$. If $g$ is the identity, then this map on global sections agrees with the pullback map above.
In the situation of the previous paragraph, suppose we have a pair of sheaves $\mathcal{F}$, $\mathcal{G}$ on $\mathcal{C}$, $\mathcal{D}$ together with a map $f^{-1}\mathcal{F} \to \mathcal{G}$, then we compose the pullback map above with $h_*$ applied to $f^{-1}\mathcal{F} \to \mathcal{G}$ to get a map
\[ g_*\mathcal{F} \longrightarrow h_*\mathcal{G} \]
Restricting to sections over an object of $\mathcal{B}$ one recovers the “pullback map” on global sections discussed above (with suitable choices of sites).
An even more general situation is where we have a commutative diagram of topoi
\[ \xymatrix{ \mathop{\mathit{Sh}}\nolimits (\mathcal{D}) \ar[d]_ h \ar[r]_ f & \mathop{\mathit{Sh}}\nolimits (\mathcal{C}) \ar[d]^ g \\ \mathop{\mathit{Sh}}\nolimits (\mathcal{B}) \ar[r]^ e & \mathop{\mathit{Sh}}\nolimits (\mathcal{A}) } \]
and a sheaf $\mathcal{G}$ on $\mathcal{C}$. Then there is a base change map
\[ e^{-1}g_*\mathcal{G} \longrightarrow h_*f^{-1}\mathcal{G}. \]
Namely, this map is adjoint to a map $g_*\mathcal{G} \to e_*h_*f^{-1}\mathcal{G} = (e \circ h)_*f^{-1}\mathcal{G}$ which is the pullback map just described.
Comments (0)