Lemma 18.30.1. Let $(\mathcal{C}, \mathcal{O})$ be a ringed site. Let $\{ U_ i \to U\} $ be a covering of $\mathcal{C}$. Then the sequence
is exact.
Lemma 18.30.1. Let $(\mathcal{C}, \mathcal{O})$ be a ringed site. Let $\{ U_ i \to U\} $ be a covering of $\mathcal{C}$. Then the sequence
is exact.
Proof. For any $\mathcal{O}$-module $\mathcal{F}$ the functor $\mathop{\mathrm{Hom}}\nolimits _\mathcal {O}(-, \mathcal{F})$ turns our sequence into the exact sequence $0 \to \mathcal{F}(U) \to \prod \mathcal{F}(U_ i) \to \prod \mathcal{F}(U_ i \times _ U U_ j)$, see (18.19.2.1). The lemma follows from this and Homology, Lemma 12.5.8. $\square$
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)