The Stacks project

Lemma 15.61.3. Consider a commutative diagram of rings

\[ \xymatrix{ A' & R' \ar[r] \ar[l] & B' \\ A \ar[u] & R \ar[l] \ar[u] \ar[r] & B \ar[u] } \]

Assume that $R'$ is flat over $R$ and $A'$ is flat over $A \otimes _ R R'$ and $B'$ is flat over $R' \otimes _ R B$. Then

\[ \text{Tor}_ i^ R(A, B) \otimes _{(A \otimes _ R B)} (A' \otimes _{R'} B') = \text{Tor}_ i^{R'}(A', B') \]

Proof. By Algebra, Section 10.76 there are canonical maps

\[ \text{Tor}_ i^ R(A, B) \longrightarrow \text{Tor}_ i^{R'}(A \otimes _ R R', B \otimes _ R R') \longrightarrow \text{Tor}_ i^{R'}(A', B') \]

These induce a map from left to right in the formula of the lemma.

Take a free resolution $F_\bullet \to A$ of $A$ as an $R$-module. Then we see that $F_\bullet \otimes _ R R'$ is a resolution of $A \otimes _ R R'$. Hence $\text{Tor}_ i^{R'}(A \otimes _ R R', B \otimes _ R R')$ is computed by $F_\bullet \otimes _ R B \otimes _ R R'$. By our assumption that $R'$ is flat over $R$, this computes $\text{Tor}_ i^ R(A, B) \otimes _ R R'$. Thus $\text{Tor}_ i^{R'}(A \otimes _ R R', B \otimes _ R R') = \text{Tor}_ i^ R(A, B) \otimes _ R R'$ (uses only flatness of $R'$ over $R$).

By Lazard's theorem (Algebra, Theorem 10.81.4) we can write $A'$, resp. $B'$ as a filtered colimit of finite free $A \otimes _ R R'$, resp. $B \otimes _ R R'$-modules. Say $A' = \mathop{\mathrm{colim}}\nolimits M_ i$ and $B' = \mathop{\mathrm{colim}}\nolimits N_ j$. The result above gives

\[ \text{Tor}_ i^{R'}(M_ i, N_ j) = \text{Tor}_ i^ R(A, B) \otimes _{A \otimes _ R B} (M_ i \otimes _{R'} N_ j) \]

as one can see by writing everything out in terms of bases. Taking the colimit we get the result of the lemma. $\square$


Comments (0)

There are also:

  • 2 comment(s) on Section 15.61: Tor independence

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 08HW. Beware of the difference between the letter 'O' and the digit '0'.