Lemma 10.76.1. Given a flat ring map $R \to R'$ and $R$-modules $M$, $N$ the natural $R$-module map $\text{Tor}_ i^ R(M, N)\otimes _ R R' \to \text{Tor}_ i^{R'}(M \otimes _ R R', N \otimes _ R R')$ is an isomorphism for all $i$.
10.76 Functorialities for Tor
In this section we briefly discuss the functoriality of $\text{Tor}$ with respect to change of ring, etc. Here is a list of items to work out.
Given a ring map $R \to R'$, an $R$-module $M$ and an $R'$-module $N'$ the $R$-modules $\text{Tor}_ i^ R(M, N')$ have a natural $R'$-module structure.
Given a ring map $R \to R'$ and $R$-modules $M$, $N$ there is a natural $R$-module map $\text{Tor}_ i^ R(M, N) \to \text{Tor}_ i^{R'}(M \otimes _ R R', N \otimes _ R R')$.
Given a ring map $R \to R'$ an $R$-module $M$ and an $R'$-module $N'$ there exists a natural $R'$-module map $\text{Tor}_ i^ R(M, N') \to \text{Tor}_ i^{R'}(M \otimes _ R R', N')$.
Proof. Omitted. This is true because a free resolution $F_\bullet $ of $M$ over $R$ stays exact when tensoring with $R'$ over $R$ and hence $(F_\bullet \otimes _ R N)\otimes _ R R'$ computes the Tor groups over $R'$. $\square$
The following lemma does not seem to fit anywhere else.
Lemma 10.76.2. Let $R$ be a ring. Let $M = \mathop{\mathrm{colim}}\nolimits M_ i$ be a filtered colimit of $R$-modules. Let $N$ be an $R$-module. Then $\text{Tor}_ n^ R(M, N) = \mathop{\mathrm{colim}}\nolimits \text{Tor}_ n^ R(M_ i, N)$ for all $n$.
Proof. Choose a free resolution $F_\bullet $ of $N$. Then $F_\bullet \otimes _ R M = \mathop{\mathrm{colim}}\nolimits F_\bullet \otimes _ R M_ i$ as complexes by Lemma 10.12.9. Thus the result by Lemma 10.8.8. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)