The Stacks project

Lemma 36.13.6. Let $X$ be an affine scheme. Let $U \subset X$ be a quasi-compact open. For every perfect object $E$ of $D(\mathcal{O}_ U)$ there exists an integer $r$ and a finite locally free sheaf $\mathcal{F}$ on $U$ such that $\mathcal{F}[-r] \oplus E$ is the restriction of a perfect object of $D(\mathcal{O}_ X)$.

Proof. Say $X = \mathop{\mathrm{Spec}}(A)$. Recall that a perfect complex is pseudo-coherent, see Cohomology, Lemma 20.49.5. By Lemma 36.13.3 we can find a bounded above complex $\mathcal{F}^\bullet $ of finite free $A$-modules such that $E$ is isomorphic to $\mathcal{F}^\bullet |_ U$ in $D(\mathcal{O}_ U)$. By Cohomology, Lemma 20.49.5 and since $U$ is quasi-compact, we see that $E$ has finite tor dimension, say $E$ has tor amplitude in $[a, b]$. Pick $r < a$ and set

\[ \mathcal{K} = \mathop{\mathrm{Ker}}(\mathcal{F}^{r} \to \mathcal{F}^{r + 1}) = \mathop{\mathrm{Im}}(\mathcal{F}^{r - 1} \to \mathcal{F}^ r). \]

Since $E$ has tor amplitude in $[a, b]$ we see that $\mathcal{F} = \mathcal{K}|_ U$ is flat (Cohomology, Lemma 20.48.2). Hence $\mathcal{F}$ is flat and of finite presentation, thus finite locally free (Properties, Lemma 28.20.2). It follows that

\[ \mathcal{F} \to \mathcal{F}^ r|_ U \to \mathcal{F}^{r + 1}|_ U \to \ldots \]

is a strictly perfect complex on $U$ representing $E$. On the other hand, the complex $P = (\mathcal{F}^ r \to \mathcal{F}^{r + 1} \to \ldots )$ is a perfect complex on $X$. Using stupid truncations we obtain a distinguished triangle

\[ P|_ U \to E \to \mathcal{F}[-r - 1] \to (P|_ U)[1] \]

If the map $E \to \mathcal{F}[-r - 1]$ is zero in $D(\mathcal{O}_ U)$, then $P|_ U = \mathcal{F}[-r - 2] \oplus E$, see Derived Categories, Lemma 13.4.11. This will be true for $r \ll 0$ for example by Lemma 36.13.5. $\square$


Comments (3)

Comment #8632 by nkym on

In the proof, should be (twice) and should be

Comment #8690 by on

The distinguished triangle is backwards (wrong truncations). So we need to rewrite the proof.


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 08EG. Beware of the difference between the letter 'O' and the digit '0'.