Lemma 28.20.2. Let $X$ be a scheme. Let $\mathcal{F}$ be a quasi-coherent $\mathcal{O}_ X$-module. The following are equivalent:
$\mathcal{F}$ is a flat $\mathcal{O}_ X$-module of finite presentation,
$\mathcal{F}$ is $\mathcal{O}_ X$-module of finite presentation and for all $x \in X$ the stalk $\mathcal{F}_ x$ is a free $\mathcal{O}_{X, x}$-module,
$\mathcal{F}$ is a locally free, finite type $\mathcal{O}_ X$-module,
$\mathcal{F}$ is a finite locally free $\mathcal{O}_ X$-module, and
$\mathcal{F}$ is an $\mathcal{O}_ X$-module of finite type, for every $x \in X$ the stalk $\mathcal{F}_ x$ is a free $\mathcal{O}_{X, x}$-module, and the function
\[ \rho _\mathcal {F} : X \to \mathbf{Z}, \quad x \longmapsto \dim _{\kappa (x)} \mathcal{F}_ x \otimes _{\mathcal{O}_{X, x}} \kappa (x) \]is locally constant in the Zariski topology on $X$.
Comments (2)
Comment #4607 by James Waldron on
Comment #4777 by Johan on