The Stacks project

Lemma 30.25.2. Let $X$ be a Noetherian scheme. Let $\mathcal{I}, \mathcal{K} \subset \mathcal{O}_ X$ be quasi-coherent sheaves of ideals. Let $X_ e \subset X$ be the closed subscheme cut out by $\mathcal{K}^ e$. Let $\mathcal{I}_ e = \mathcal{I}\mathcal{O}_{X_ e}$. Let $(\mathcal{F}_ n)$ be an object of $\textit{Coh}(X, \mathcal{I})$. Assume

  1. the functor $\textit{Coh}(\mathcal{O}_{X_ e}) \to \textit{Coh}(X_ e, \mathcal{I}_ e)$ is an equivalence for all $e \geq 1$, and

  2. there exists a coherent sheaf $\mathcal{H}$ on $X$ and a map $\alpha : (\mathcal{F}_ n) \to \mathcal{H}^\wedge $ whose kernel and cokernel are annihilated by a power of $\mathcal{K}$.

Then $(\mathcal{F}_ n)$ is in the essential image of (30.23.3.1).

Proof. During this proof we will use without further mention that for a closed immersion $i : Z \to X$ the functor $i_*$ gives an equivalence between the category of coherent modules on $Z$ and coherent modules on $X$ annihilated by the ideal sheaf of $Z$, see Lemma 30.9.8. In particular we may identify $\textit{Coh}(\mathcal{O}_{X_ e})$ with the category of coherent $\mathcal{O}_ X$-modules annihilated by $\mathcal{K}^ e$ and $\textit{Coh}(X_ e, \mathcal{I}_ e)$ as the full subcategory of $\textit{Coh}(X, \mathcal{I})$ of objects annihilated by $\mathcal{K}^ e$. Moreover (1) tells us these two categories are equivalent under the completion functor (30.23.3.1).

Applying this equivalence we get a coherent $\mathcal{O}_ X$-module $\mathcal{G}_ e$ annihilated by $\mathcal{K}^ e$ corresponding to the system $(\mathcal{F}_ n/\mathcal{K}^ e\mathcal{F}_ n)$ of $\textit{Coh}(X, \mathcal{I})$. The maps $\mathcal{F}_ n/\mathcal{K}^{e + 1}\mathcal{F}_ n \to \mathcal{F}_ n/\mathcal{K}^ e\mathcal{F}_ n$ correspond to canonical maps $\mathcal{G}_{e + 1} \to \mathcal{G}_ e$ which induce isomorphisms $\mathcal{G}_{e + 1}/\mathcal{K}^ e\mathcal{G}_{e + 1} \to \mathcal{G}_ e$. Hence $(\mathcal{G}_ e)$ is an object of $\textit{Coh}(X, \mathcal{K})$. The map $\alpha $ induces a system of maps

\[ \mathcal{F}_ n/\mathcal{K}^ e\mathcal{F}_ n \longrightarrow \mathcal{H}/(\mathcal{I}^ n + \mathcal{K}^ e)\mathcal{H} \]

whence maps $\mathcal{G}_ e \to \mathcal{H}/\mathcal{K}^ e\mathcal{H}$ (by the equivalence of categories again). Let $t \geq 1$ be an integer, which exists by assumption (2), such that $\mathcal{K}^ t$ annihilates the kernel and cokernel of all the maps $\mathcal{F}_ n \to \mathcal{H}/\mathcal{I}^ n\mathcal{H}$. Then $\mathcal{K}^{2t}$ annihilates the kernel and cokernel of the maps $\mathcal{F}_ n/\mathcal{K}^ e\mathcal{F}_ n \to \mathcal{H}/(\mathcal{I}^ n + \mathcal{K}^ e)\mathcal{H}$, see Remark 30.25.1. Whereupon we conclude that $\mathcal{K}^{4t}$ annihilates the kernel and the cokernel of the maps

\[ \mathcal{G}_ e \longrightarrow \mathcal{H}/\mathcal{K}^ e\mathcal{H}, \]

see Remark 30.25.1. We apply Lemma 30.23.6 to obtain a coherent $\mathcal{O}_ X$-module $\mathcal{F}$, a map $a : \mathcal{F} \to \mathcal{H}$ and an isomorphism $\beta : (\mathcal{G}_ e) \to (\mathcal{F}/\mathcal{K}^ e\mathcal{F})$ in $\textit{Coh}(X, \mathcal{K})$. Working backwards, for a given $n$ the triple $(\mathcal{F}/\mathcal{I}^ n\mathcal{F}, a \bmod \mathcal{I}^ n, \beta \bmod \mathcal{I}^ n)$ is a triple as in the lemma for the morphism $\alpha _ n \bmod \mathcal{K}^ e : (\mathcal{F}_ n/\mathcal{K}^ e\mathcal{F}_ n) \to (\mathcal{H}/(\mathcal{I}^ n + \mathcal{K}^ e)\mathcal{H})$ of $\textit{Coh}(X, \mathcal{K})$. Thus the uniqueness in Lemma 30.23.6 gives a canonical isomorphism $\mathcal{F}/\mathcal{I}^ n\mathcal{F} \to \mathcal{F}_ n$ compatible with all the morphisms in sight. This finishes the proof of the lemma. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 088A. Beware of the difference between the letter 'O' and the digit '0'.