The Stacks project

Lemma 30.9.7. Let $X$ be a locally Noetherian scheme. Let $\mathcal{F}$ be a coherent $\mathcal{O}_ X$-module. Then $\text{Supp}(\mathcal{F})$ is closed, and $\mathcal{F}$ comes from a coherent sheaf on the scheme theoretic support of $\mathcal{F}$, see Morphisms, Definition 29.5.5.

Proof. Let $i : Z \to X$ be the scheme theoretic support of $\mathcal{F}$ and let $\mathcal{G}$ be the finite type quasi-coherent sheaf on $Z$ such that $i_*\mathcal{G} \cong \mathcal{F}$. Since $Z = \text{Supp}(\mathcal{F})$ we see that the support is closed. The scheme $Z$ is locally Noetherian by Morphisms, Lemmas 29.15.5 and 29.15.6. Finally, $\mathcal{G}$ is a coherent $\mathcal{O}_ Z$-module by Lemma 30.9.1 $\square$


Comments (0)

There are also:

  • 2 comment(s) on Section 30.9: Coherent sheaves on locally Noetherian schemes

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 01Y5. Beware of the difference between the letter 'O' and the digit '0'.