Lemma 10.73.1. Given a flat ring map $R \to R'$, an $R$-module $M$, and an $R'$-module $N'$ the natural map
is an isomorphism for $i \geq 0$.
In this section we briefly discuss the functoriality of $\mathop{\mathrm{Ext}}\nolimits $ with respect to change of ring, etc. Here is a list of items to work out.
Given $R \to R'$, an $R$-module $M$ and an $R'$-module $N'$ the $R$-module $\mathop{\mathrm{Ext}}\nolimits ^ i_ R(M, N')$ has a natural $R'$-module structure. Moreover, there is a canonical $R'$-linear map $\mathop{\mathrm{Ext}}\nolimits ^ i_{R'}(M \otimes _ R R', N') \to \mathop{\mathrm{Ext}}\nolimits ^ i_ R(M, N')$.
Given $R \to R'$ and $R$-modules $M$, $N$ there is a natural $R$-module map $\mathop{\mathrm{Ext}}\nolimits ^ i_ R(M, N) \to \text{Ext}^ i_ R(M, N \otimes _ R R')$.
Lemma 10.73.1. Given a flat ring map $R \to R'$, an $R$-module $M$, and an $R'$-module $N'$ the natural map is an isomorphism for $i \geq 0$.
Proof. Choose a free resolution $F_\bullet $ of $M$. Since $R \to R'$ is flat we see that $F_\bullet \otimes _ R R'$ is a free resolution of $M \otimes _ R R'$ over $R'$. The statement is that the map
induces an isomorphism on homology groups, which is true because it is an isomorphism of complexes by Lemma 10.14.3. $\square$
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (1)
Comment #683 by Keenan Kidwell on