The Stacks project

70.9 Applications

The following lemma can also be deduced directly from Decent Spaces, Lemma 68.8.6 without passing through absolute Noetherian approximation.

Lemma 70.9.1. Let $S$ be a scheme. Let $X$ be a quasi-compact and quasi-separated algebraic space over $S$. Every quasi-coherent $\mathcal{O}_ X$-module is a filtered colimit of finitely presented $\mathcal{O}_ X$-modules.

Proof. We may view $X$ as an algebraic space over $\mathop{\mathrm{Spec}}(\mathbf{Z})$, see Spaces, Definition 65.16.2 and Properties of Spaces, Definition 66.3.1. Thus we may apply Proposition 70.8.1 and write $X = \mathop{\mathrm{lim}}\nolimits X_ i$ with $X_ i$ of finite presentation over $\mathbf{Z}$. Thus $X_ i$ is a Noetherian algebraic space, see Morphisms of Spaces, Lemma 67.28.6. The morphism $X \to X_ i$ is affine, see Lemma 70.4.1. Conclusion by Cohomology of Spaces, Lemma 69.15.2. $\square$

The rest of this section consists of straightforward applications of Lemma 70.9.1.

Lemma 70.9.2. Let $S$ be a scheme. Let $X$ be a quasi-compact and quasi-separated algebraic space over $S$. Let $\mathcal{F}$ be a quasi-coherent $\mathcal{O}_ X$-module. Then $\mathcal{F}$ is the directed colimit of its finite type quasi-coherent submodules.

Proof. If $\mathcal{G}, \mathcal{H} \subset \mathcal{F}$ are finite type quasi-coherent $\mathcal{O}_ X$-submodules then the image of $\mathcal{G} \oplus \mathcal{H} \to \mathcal{F}$ is another finite type quasi-coherent $\mathcal{O}_ X$-submodule which contains both of them. In this way we see that the system is directed. To show that $\mathcal{F}$ is the colimit of this system, write $\mathcal{F} = \mathop{\mathrm{colim}}\nolimits _ i \mathcal{F}_ i$ as a directed colimit of finitely presented quasi-coherent sheaves as in Lemma 70.9.1. Then the images $\mathcal{G}_ i = \mathop{\mathrm{Im}}(\mathcal{F}_ i \to \mathcal{F})$ are finite type quasi-coherent subsheaves of $\mathcal{F}$. Since $\mathcal{F}$ is the colimit of these the result follows. $\square$

Lemma 70.9.3. Let $S$ be a scheme. Let $X$ be a quasi-compact and quasi-separated algebraic space over $S$. Let $\mathcal{F}$ be a finite type quasi-coherent $\mathcal{O}_ X$-module. Then we can write $\mathcal{F} = \mathop{\mathrm{lim}}\nolimits \mathcal{F}_ i$ where each $\mathcal{F}_ i$ is an $\mathcal{O}_ X$-module of finite presentation and all transition maps $\mathcal{F}_ i \to \mathcal{F}_{i'}$ surjective.

Proof. Write $\mathcal{F} = \mathop{\mathrm{colim}}\nolimits \mathcal{G}_ i$ as a filtered colimit of finitely presented $\mathcal{O}_ X$-modules (Lemma 70.9.1). We claim that $\mathcal{G}_ i \to \mathcal{F}$ is surjective for some $i$. Namely, choose an étale surjection $U \to X$ where $U$ is an affine scheme. Choose finitely many sections $s_ k \in \mathcal{F}(U)$ generating $\mathcal{F}|_ U$. Since $U$ is affine we see that $s_ k$ is in the image of $\mathcal{G}_ i \to \mathcal{F}$ for $i$ large enough. Hence $\mathcal{G}_ i \to \mathcal{F}$ is surjective for $i$ large enough. Choose such an $i$ and let $\mathcal{K} \subset \mathcal{G}_ i$ be the kernel of the map $\mathcal{G}_ i \to \mathcal{F}$. Write $\mathcal{K} = \mathop{\mathrm{colim}}\nolimits \mathcal{K}_ a$ as the filtered colimit of its finite type quasi-coherent submodules (Lemma 70.9.2). Then $\mathcal{F} = \mathop{\mathrm{colim}}\nolimits \mathcal{G}_ i/\mathcal{K}_ a$ is a solution to the problem posed by the lemma. $\square$

Let $X$ be an algebraic space. In the following lemma we use the notion of a finitely presented quasi-coherent $\mathcal{O}_ X$-algebra $\mathcal{A}$. This means that for every affine $U = \mathop{\mathrm{Spec}}(R)$ étale over $X$ we have $\mathcal{A}|_ U = \widetilde{A}$ where $A$ is a (commutative) $R$-algebra which is of finite presentation as an $R$-algebra.

Lemma 70.9.4. Let $S$ be a scheme. Let $X$ be a quasi-compact and quasi-separated algebraic space over $S$. Let $\mathcal{A}$ be a quasi-coherent $\mathcal{O}_ X$-algebra. Then $\mathcal{A}$ is a directed colimit of finitely presented quasi-coherent $\mathcal{O}_ X$-algebras.

Proof. First we write $\mathcal{A} = \mathop{\mathrm{colim}}\nolimits _ i \mathcal{F}_ i$ as a directed colimit of finitely presented quasi-coherent sheaves as in Lemma 70.9.1. For each $i$ let $\mathcal{B}_ i = \text{Sym}(\mathcal{F}_ i)$ be the symmetric algebra on $\mathcal{F}_ i$ over $\mathcal{O}_ X$. Write $\mathcal{I}_ i = \mathop{\mathrm{Ker}}(\mathcal{B}_ i \to \mathcal{A})$. Write $\mathcal{I}_ i = \mathop{\mathrm{colim}}\nolimits _ j \mathcal{F}_{i, j}$ where $\mathcal{F}_{i, j}$ is a finite type quasi-coherent submodule of $\mathcal{I}_ i$, see Lemma 70.9.2. Set $\mathcal{I}_{i, j} \subset \mathcal{I}_ i$ equal to the $\mathcal{B}_ i$-ideal generated by $\mathcal{F}_{i, j}$. Set $\mathcal{A}_{i, j} = \mathcal{B}_ i/\mathcal{I}_{i, j}$. Then $\mathcal{A}_{i, j}$ is a quasi-coherent finitely presented $\mathcal{O}_ X$-algebra. Define $(i, j) \leq (i', j')$ if $i \leq i'$ and the map $\mathcal{B}_ i \to \mathcal{B}_{i'}$ maps the ideal $\mathcal{I}_{i, j}$ into the ideal $\mathcal{I}_{i', j'}$. Then it is clear that $\mathcal{A} = \mathop{\mathrm{colim}}\nolimits _{i, j} \mathcal{A}_{i, j}$. $\square$

Let $X$ be an algebraic space. In the following lemma we use the notion of a quasi-coherent $\mathcal{O}_ X$-algebra $\mathcal{A}$ of finite type. This means that for every affine $U = \mathop{\mathrm{Spec}}(R)$ étale over $X$ we have $\mathcal{A}|_ U = \widetilde{A}$ where $A$ is a (commutative) $R$-algebra which is of finite type as an $R$-algebra.

Lemma 70.9.5. Let $S$ be a scheme. Let $X$ be a quasi-compact and quasi-separated algebraic space over $S$. Let $\mathcal{A}$ be a quasi-coherent $\mathcal{O}_ X$-algebra. Then $\mathcal{A}$ is the directed colimit of its finite type quasi-coherent $\mathcal{O}_ X$-subalgebras.

Proof. Omitted. Hint: Compare with the proof of Lemma 70.9.2. $\square$

Let $X$ be an algebraic space. In the following lemma we use the notion of a finite (resp. integral) quasi-coherent $\mathcal{O}_ X$-algebra $\mathcal{A}$. This means that for every affine $U = \mathop{\mathrm{Spec}}(R)$ étale over $X$ we have $\mathcal{A}|_ U = \widetilde{A}$ where $A$ is a (commutative) $R$-algebra which is finite (resp. integral) as an $R$-algebra.

Lemma 70.9.6. Let $S$ be a scheme. Let $X$ be a quasi-compact and quasi-separated algebraic space over $S$. Let $\mathcal{A}$ be a finite quasi-coherent $\mathcal{O}_ X$-algebra. Then $\mathcal{A} = \mathop{\mathrm{colim}}\nolimits \mathcal{A}_ i$ is a directed colimit of finite and finitely presented quasi-coherent $\mathcal{O}_ X$-algebras with surjective transition maps.

Proof. By Lemma 70.9.3 there exists a finitely presented $\mathcal{O}_ X$-module $\mathcal{F}$ and a surjection $\mathcal{F} \to \mathcal{A}$. Using the algebra structure we obtain a surjection

\[ \text{Sym}^*_{\mathcal{O}_ X}(\mathcal{F}) \longrightarrow \mathcal{A} \]

Denote $\mathcal{J}$ the kernel. Write $\mathcal{J} = \mathop{\mathrm{colim}}\nolimits \mathcal{E}_ i$ as a filtered colimit of finite type $\mathcal{O}_ X$-submodules $\mathcal{E}_ i$ (Lemma 70.9.2). Set

\[ \mathcal{A}_ i = \text{Sym}^*_{\mathcal{O}_ X}(\mathcal{F})/(\mathcal{E}_ i) \]

where $(\mathcal{E}_ i)$ indicates the ideal sheaf generated by the image of $\mathcal{E}_ i \to \text{Sym}^*_{\mathcal{O}_ X}(\mathcal{F})$. Then each $\mathcal{A}_ i$ is a finitely presented $\mathcal{O}_ X$-algebra, the transition maps are surjective, and $\mathcal{A} = \mathop{\mathrm{colim}}\nolimits \mathcal{A}_ i$. To finish the proof we still have to show that $\mathcal{A}_ i$ is a finite $\mathcal{O}_ X$-algebra for $i$ sufficiently large. To do this we choose an étale surjective map $U \to X$ where $U$ is an affine scheme. Take generators $f_1, \ldots , f_ m \in \Gamma (U, \mathcal{F})$. As $\mathcal{A}(U)$ is a finite $\mathcal{O}_ X(U)$-algebra we see that for each $j$ there exists a monic polynomial $P_ j \in \mathcal{O}(U)[T]$ such that $P_ j(f_ j)$ is zero in $\mathcal{A}(U)$. Since $\mathcal{A} = \mathop{\mathrm{colim}}\nolimits \mathcal{A}_ i$ by construction, we have $P_ j(f_ j) = 0$ in $\mathcal{A}_ i(U)$ for all sufficiently large $i$. For such $i$ the algebras $\mathcal{A}_ i$ are finite. $\square$

Lemma 70.9.7. Let $S$ be a scheme. Let $X$ be a quasi-compact and quasi-separated algebraic space over $S$. Let $\mathcal{A}$ be an integral quasi-coherent $\mathcal{O}_ X$-algebra. Then

  1. $\mathcal{A}$ is the directed colimit of its finite quasi-coherent $\mathcal{O}_ X$-subalgebras, and

  2. $\mathcal{A}$ is a directed colimit of finite and finitely presented $\mathcal{O}_ X$-algebras.

Proof. By Lemma 70.9.5 we have $\mathcal{A} = \mathop{\mathrm{colim}}\nolimits \mathcal{A}_ i$ where $\mathcal{A}_ i \subset \mathcal{A}$ runs through the quasi-coherent $\mathcal{O}_ X$-sub algebras of finite type. Any finite type quasi-coherent $\mathcal{O}_ X$-subalgebra of $\mathcal{A}$ is finite (use Algebra, Lemma 10.36.5 on affine schemes étale over $X$). This proves (1).

To prove (2), write $\mathcal{A} = \mathop{\mathrm{colim}}\nolimits \mathcal{F}_ i$ as a colimit of finitely presented $\mathcal{O}_ X$-modules using Lemma 70.9.1. For each $i$, let $\mathcal{J}_ i$ be the kernel of the map

\[ \text{Sym}^*_{\mathcal{O}_ X}(\mathcal{F}_ i) \longrightarrow \mathcal{A} \]

For $i' \geq i$ there is an induced map $\mathcal{J}_ i \to \mathcal{J}_{i'}$ and we have $\mathcal{A} = \mathop{\mathrm{colim}}\nolimits \text{Sym}^*_{\mathcal{O}_ X}(\mathcal{F}_ i)/\mathcal{J}_ i$. Moreover, the quasi-coherent $\mathcal{O}_ X$-algebras $\text{Sym}^*_{\mathcal{O}_ X}(\mathcal{F}_ i)/\mathcal{J}_ i$ are finite (see above). Write $\mathcal{J}_ i = \mathop{\mathrm{colim}}\nolimits \mathcal{E}_{ik}$ as a colimit of finitely presented $\mathcal{O}_ X$-modules. Given $i' \geq i$ and $k$ there exists a $k'$ such that we have a map $\mathcal{E}_{ik} \to \mathcal{E}_{i'k'}$ making

\[ \xymatrix{ \mathcal{J}_ i \ar[r] & \mathcal{J}_{i'} \\ \mathcal{E}_{ik} \ar[u] \ar[r] & \mathcal{E}_{i'k'} \ar[u] } \]

commute. This follows from Cohomology of Spaces, Lemma 69.5.3. This induces a map

\[ \mathcal{A}_{ik} = \text{Sym}^*_{\mathcal{O}_ X}(\mathcal{F}_ i)/(\mathcal{E}_{ik}) \longrightarrow \text{Sym}^*_{\mathcal{O}_ X}(\mathcal{F}_{i'})/(\mathcal{E}_{i'k'}) = \mathcal{A}_{i'k'} \]

where $(\mathcal{E}_{ik})$ denotes the ideal generated by $\mathcal{E}_{ik}$. The quasi-coherent $\mathcal{O}_ X$-algebras $\mathcal{A}_{ki}$ are of finite presentation and finite for $k$ large enough (see proof of Lemma 70.9.6). Finally, we have

\[ \mathop{\mathrm{colim}}\nolimits \mathcal{A}_{ik} = \mathop{\mathrm{colim}}\nolimits \mathcal{A}_ i = \mathcal{A} \]

Namely, the first equality was shown in the proof of Lemma 70.9.6 and the second equality because $\mathcal{A}$ is the colimit of the modules $\mathcal{F}_ i$. $\square$

Lemma 70.9.8. Let $S$ be a scheme. Let $X$ be a quasi-compact and quasi-separated algebraic space over $S$. Let $U \subset X$ be a quasi-compact open. Let $\mathcal{F}$ be a quasi-coherent $\mathcal{O}_ X$-module. Let $\mathcal{G} \subset \mathcal{F}|_ U$ be a quasi-coherent $\mathcal{O}_ U$-submodule which is of finite type. Then there exists a quasi-coherent submodule $\mathcal{G}' \subset \mathcal{F}$ which is of finite type such that $\mathcal{G}'|_ U = \mathcal{G}$.

Proof. Denote $j : U \to X$ the inclusion morphism. As $X$ is quasi-separated and $U$ quasi-compact, the morphism $j$ is quasi-compact. Hence $j_*\mathcal{G} \subset j_*\mathcal{F}|_ U$ are quasi-coherent modules on $X$ (Morphisms of Spaces, Lemma 67.11.2). Let $\mathcal{H} = \mathop{\mathrm{Ker}}(j_*\mathcal{G} \oplus \mathcal{F} \to j_*\mathcal{F}|_ U)$. Then $\mathcal{H}|_ U = \mathcal{G}$. By Lemma 70.9.2 we can find a finite type quasi-coherent submodule $\mathcal{H}' \subset \mathcal{H}$ such that $\mathcal{H}'|_ U = \mathcal{H}|_ U = \mathcal{G}$. Set $\mathcal{G}' = \mathop{\mathrm{Im}}(\mathcal{H}' \to \mathcal{F})$ to conclude. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 07V8. Beware of the difference between the letter 'O' and the digit '0'.