Lemma 69.15.2. Let $S$ be a scheme. Let $f : X \to Y$ be an affine morphism of algebraic spaces over $S$ with $Y$ Noetherian. Then every quasi-coherent $\mathcal{O}_ X$-module is a filtered colimit of finitely presented $\mathcal{O}_ X$-modules.
Proof. Let $\mathcal{F}$ be a quasi-coherent $\mathcal{O}_ X$-module. Write $f_*\mathcal{F} = \mathop{\mathrm{colim}}\nolimits \mathcal{H}_ i$ with $\mathcal{H}_ i$ a coherent $\mathcal{O}_ Y$-module, see Lemma 69.15.1. By Lemma 69.12.2 the modules $\mathcal{H}_ i$ are $\mathcal{O}_ Y$-modules of finite presentation. Hence $f^*\mathcal{H}_ i$ is an $\mathcal{O}_ X$-module of finite presentation, see Properties of Spaces, Section 66.30. We claim the map
is surjective as $f$ is assumed affine, Namely, choose a scheme $V$ and a surjective étale morphism $V \to Y$. Set $U = X \times _ Y V$. Then $U$ is a scheme, $f' : U \to V$ is affine, and $U \to X$ is surjective étale. By Properties of Spaces, Lemma 66.26.2 we see that $f'_*(\mathcal{F}|_ U) = f_*\mathcal{F}|_ V$ and similarly for pullbacks. Thus the restriction of $f^*f_*\mathcal{F} \to \mathcal{F}$ to $U$ is the map
which is surjective as $f'$ is an affine morphism of schemes. Hence the claim holds.
We conclude that every quasi-coherent module on $X$ is a quotient of a filtered colimit of finitely presented modules. In particular, we see that $\mathcal{F}$ is a cokernel of a map
with $\mathcal{G}_ j$ and $\mathcal{H}_ i$ finitely presented. Note that for every $j \in I$ there exist $i \in I$ and a morphism $\alpha : \mathcal{G}_ j \to \mathcal{H}_ i$ such that
commutes, see Lemma 69.5.3. In this situation $\mathop{\mathrm{Coker}}(\alpha )$ is a finitely presented $\mathcal{O}_ X$-module which comes endowed with a map $\mathop{\mathrm{Coker}}(\alpha ) \to \mathcal{F}$. Consider the set $K$ of triples $(i, j, \alpha )$ as above. We say that $(i, j, \alpha ) \leq (i', j', \alpha ')$ if and only if $i \leq i'$, $j \leq j'$, and the diagram
commutes. It follows from the above that $K$ is a directed partially ordered set,
and we win. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)