The Stacks project

Lemma 10.168.4. Let $A = \mathop{\mathrm{colim}}\nolimits _{i \in I} A_ i$ be a directed colimit of rings. Let $0 \in I$ and $\varphi _0 : B_0 \to C_0$ a map of $A_0$-algebras. Assume

  1. $A \otimes _{A_0} B_0 \to A \otimes _{A_0} C_0$ is surjective,

  2. $C_0$ is of finite type over $B_0$.

Then for some $i \geq 0$ the map $A_ i \otimes _{A_0} B_0 \to A_ i \otimes _{A_0} C_0$ is surjective.

Proof. Let $x_1, \ldots , x_ m$ be generators for $C_0$ over $B_0$. Pick $b_ j \in A \otimes _{A_0} B_0$ mapping to $1 \otimes x_ j$ in $A \otimes _{A_0} C_0$. For some $i \geq 0$ we can find $b_{j, i} \in A_ i \otimes _{A_0} B_0$ mapping to $b_ j$. After increasing $i$ we may assume that $b_{j, i}$ maps to $1 \otimes x_ j$ in $A_ i \otimes _{A_0} C_0$ for all $j = 1, \ldots , m$. Then this $i$ works. $\square$


Comments (2)

Comment #8253 by DatPham on

I think we need to enlarge once more to ensure that maps into in .


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 07RH. Beware of the difference between the letter 'O' and the digit '0'.