The Stacks project

Geometric regularity descends through faithfully flat maps of algebras

Lemma 10.166.3. Let $k$ be a field. Let $A \to B$ be a faithfully flat $k$-algebra map. If $B$ is geometrically regular over $k$, so is $A$.

Proof. Assume $B$ is geometrically regular over $k$. Let $k'/k$ be a finite, purely inseparable extension. Then $A \otimes _ k k' \to B \otimes _ k k'$ is faithfully flat as a base change of $A \to B$ (by Lemmas 10.30.3 and 10.39.7) and $B \otimes _ k k'$ is regular by our assumption on $B$ over $k$. Then $A \otimes _ k k'$ is regular by Lemma 10.164.4. $\square$


Comments (1)

Comment #2110 by Matthew Emerton on

Suggested slogan: Geometric regularity descends through faithfully flat maps of algebras


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 07NH. Beware of the difference between the letter 'O' and the digit '0'.