Lemma 15.9.4. Let $A \to B$ be a ring map and $J \subset B$ an ideal. If $A \to B$ is étale at every prime of $V(J)$, then there exists a $g \in B$ mapping to an invertible element of $B/J$ such that $A' = B_ g$ is étale over $A$.
Proof. The set of points of $\mathop{\mathrm{Spec}}(B)$ where $A \to B$ is not étale is a closed subset of $\mathop{\mathrm{Spec}}(B)$, see Algebra, Definition 10.143.1. Write this as $V(J')$ for some ideal $J' \subset B$. Then $V(J') \cap V(J) = \emptyset $ hence $J + J' = B$ by Algebra, Lemma 10.17.2. Write $1 = f + g$ with $f \in J$ and $g \in J'$. Then $g$ works. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)