Definition 10.143.1. Let $R \to S$ be a ring map. We say $R \to S$ is étale if it is of finite presentation and the naive cotangent complex $\mathop{N\! L}\nolimits _{S/R}$ is quasi-isomorphic to zero. Given a prime $\mathfrak q$ of $S$ we say that $R \to S$ is étale at $\mathfrak q$ if there exists a $g \in S$, $g \not\in \mathfrak q$ such that $R \to S_ g$ is étale.
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)