Lemma 10.77.5. Let $R$ be a ring. Let $I \subset R$ be a nilpotent ideal. Let $\overline{P}$ be a projective $R/I$-module. Then there exists a projective $R$-module $P$ such that $P/IP \cong \overline{P}$.
Proof. By Lemma 10.77.2 we can choose a set $A$ and a direct sum decomposition $\bigoplus _{\alpha \in A} R/I = \overline{P} \oplus \overline{K}$ for some $R/I$-module $\overline{K}$. Write $F = \bigoplus _{\alpha \in A} R$ for the free $R$-module on $A$. Choose a lift $p : F \to F$ of the projector $\overline{p}$ associated to the direct summand $\overline{P}$ of $\bigoplus _{\alpha \in A} R/I$. Note that $p^2 - p \in \text{End}_ R(F)$ is a nilpotent endomorphism of $F$ (as $I$ is nilpotent and the matrix entries of $p^2 - p$ are in $I$; more precisely, if $I^ n = 0$, then $(p^2 - p)^ n = 0$). Hence by Lemma 10.32.7 we can modify our choice of $p$ and assume that $p$ is a projector. Set $P = \mathop{\mathrm{Im}}(p)$. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (2)
Comment #1192 by Mohamed Hashi on
Comment #1206 by Johan on
There are also: