Lemma 10.158.11. Let $K/k$ be a field extension. Then $K$ is a filtered colimit of global complete intersection algebras over $k$. If $K/k$ is separable, then $K$ is a filtered colimit of smooth algebras over $k$.
Proof. Suppose that $E \subset K$ is a finite subset. It suffices to show that there exists a $k$ subalgebra $A \subset K$ which contains $E$ and which is a global complete intersection (resp. smooth) over $k$. The separable/smooth case follows from Lemma 10.158.10. In general let $L \subset K$ be the subfield generated by $E$. Pick a transcendence basis $x_1, \ldots , x_ d \in L$ over $k$. The extension $L/k(x_1, \ldots , x_ d)$ is finite. Say $L = k(x_1, \ldots , x_ d)[y_1, \ldots , y_ r]$. Pick inductively polynomials $P_ i \in k(x_1, \ldots , x_ d)[Y_1, \ldots , Y_ r]$ such that $P_ i = P_ i(Y_1, \ldots , Y_ i)$ is monic in $Y_ i$ over $k(x_1, \ldots , x_ d)[Y_1, \ldots , Y_{i - 1}]$ and maps to the minimum polynomial of $y_ i$ in $k(x_1, \ldots , x_ d)[y_1, \ldots , y_{i - 1}][Y_ i]$. Then it is clear that $P_1, \ldots , P_ r$ is a regular sequence in $k(x_1, \ldots , x_ r)[Y_1, \ldots , Y_ r]$ and that $L = k(x_1, \ldots , x_ r)[Y_1, \ldots , Y_ r]/(P_1, \ldots , P_ r)$. If $h \in k[x_1, \ldots , x_ d]$ is a polynomial such that $P_ i \in k[x_1, \ldots , x_ d, 1/h, Y_1, \ldots , Y_ r]$, then we see that $P_1, \ldots , P_ r$ is a regular sequence in $k[x_1, \ldots , x_ d, 1/h, Y_1, \ldots , Y_ r]$ and $A = k[x_1, \ldots , x_ d, 1/h, Y_1, \ldots , Y_ r]/(P_1, \ldots , P_ r)$ is a global complete intersection. After adjusting our choice of $h$ we may assume $E \subset A$ and we win. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)
There are also: