Lemma 96.22.1. Let $S$ be a scheme. Let $\mathcal{X}$ be an algebraic stack over $S$ representable by the algebraic space $F$.
If $\mathcal{I}$ injective in $\textit{Ab}(\mathcal{X}_{\acute{e}tale})$, then $\mathcal{I}|_{F_{\acute{e}tale}}$ is injective in $\textit{Ab}(F_{\acute{e}tale})$,
If $\mathcal{I}^\bullet $ is a K-injective complex in $\textit{Ab}(\mathcal{X}_{\acute{e}tale})$, then $\mathcal{I}^\bullet |_{F_{\acute{e}tale}}$ is a K-injective complex in $\textit{Ab}(F_{\acute{e}tale})$.
The same does not hold for modules.
Comments (0)