Lemma 96.8.2. Let $S$ be a scheme. Let $f : \mathcal{X} \to \mathcal{Y}$ be a morphism of categories fibred in groupoids over $S$. Assume $\mathcal{X}$, $\mathcal{Y}$ are representable by schemes $X$, $Y$. Let $f : X \to Y$ be the morphism of schemes corresponding to $f$. For $\tau \in \{ Zar,\linebreak[0] {\acute{e}tale},\linebreak[0] smooth,\linebreak[0] syntomic,\linebreak[0] fppf\} $ the morphism of ringed topoi $f : (\mathop{\mathit{Sh}}\nolimits (\mathcal{X}_\tau ), \mathcal{O}_\mathcal {X}) \to (\mathop{\mathit{Sh}}\nolimits (\mathcal{Y}_\tau ), \mathcal{O}_\mathcal {Y})$ agrees with the morphism of ringed topoi $f : (\mathop{\mathit{Sh}}\nolimits ((\mathit{Sch}/X)_\tau ), \mathcal{O}_ X) \to (\mathop{\mathit{Sh}}\nolimits ((\mathit{Sch}/Y)_\tau ), \mathcal{O}_ Y)$ via the identifications of Lemma 96.8.1.
Proof. Follows by unwinding the definitions. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)
There are also: