Lemma 96.18.1. Generalities on Čech complexes.
If
\[ \xymatrix{ \mathcal{V} \ar[d]_ g \ar[r]_ h & \mathcal{U} \ar[d]^ f \\ \mathcal{Y} \ar[r]^ e & \mathcal{X} } \]is $2$-commutative diagram of categories fibred in groupoids over $(\mathit{Sch}/S)_{fppf}$, then there is a morphism of Čech complexes
\[ \check{\mathcal{C}}^\bullet (\mathcal{U} \to \mathcal{X}, \mathcal{F}) \longrightarrow \check{\mathcal{C}}^\bullet (\mathcal{V} \to \mathcal{Y}, e^{-1}\mathcal{F}) \]if $h$ and $e$ are equivalences, then the map of (1) is an isomorphism,
if $f, f' : \mathcal{U} \to \mathcal{X}$ are $2$-isomorphic, then the associated Čech complexes are isomorphic.
Comments (2)
Comment #7748 by Mingchen on
Comment #7993 by Stacks Project on
There are also: