The Stacks project

Lemma 46.5.11. Let $S$ be a scheme.

  1. The category $\textit{Adeq}(\mathcal{O})$ is abelian.

  2. The functor $\textit{Adeq}(\mathcal{O}) \to \textit{Mod}((\mathit{Sch}/S)_\tau , \mathcal{O})$ is exact.

  3. If $0 \to \mathcal{F}_1 \to \mathcal{F}_2 \to \mathcal{F}_3 \to 0$ is a short exact sequence of $\mathcal{O}$-modules and $\mathcal{F}_1$ and $\mathcal{F}_3$ are adequate, then $\mathcal{F}_2$ is adequate.

  4. The category $\textit{Adeq}(\mathcal{O})$ has colimits and $\textit{Adeq}(\mathcal{O}) \to \textit{Mod}((\mathit{Sch}/S)_\tau , \mathcal{O})$ commutes with them.

Proof. Let $\varphi : \mathcal{F} \to \mathcal{G}$ be a map of adequate $\mathcal{O}$-modules. To prove (1) and (2) it suffices to show that $\mathcal{K} = \mathop{\mathrm{Ker}}(\varphi )$ and $\mathcal{Q} = \mathop{\mathrm{Coker}}(\varphi )$ computed in $\textit{Mod}((\mathit{Sch}/S)_\tau , \mathcal{O})$ are adequate. Let $U = \mathop{\mathrm{Spec}}(A)$ be an affine scheme over $S$. Let $F = F_{\mathcal{F}, A}$ and $G = F_{\mathcal{G}, A}$. By Lemmas 46.3.11 and 46.3.10 the kernel $K$ and cokernel $Q$ of the induced map $F \to G$ are adequate functors. Because the kernel is computed on the level of presheaves, we see that $K = F_{\mathcal{K}, A}$ and we conclude $\mathcal{K}$ is adequate. To prove the result for the cokernel, denote $\mathcal{Q}'$ the presheaf cokernel of $\varphi $. Then $Q = F_{\mathcal{Q}', A}$ and $\mathcal{Q} = (\mathcal{Q}')^\# $. Hence $\mathcal{Q}$ is adequate by Lemma 46.5.10.

Let $0 \to \mathcal{F}_1 \to \mathcal{F}_2 \to \mathcal{F}_3 \to 0$ is a short exact sequence of $\mathcal{O}$-modules and $\mathcal{F}_1$ and $\mathcal{F}_3$ are adequate. Let $U = \mathop{\mathrm{Spec}}(A)$ be an affine scheme over $S$. Let $F_ i = F_{\mathcal{F}_ i, A}$. The sequence of functors

\[ 0 \to F_1 \to F_2 \to F_3 \to 0 \]

is exact, because for $V = \mathop{\mathrm{Spec}}(B)$ affine over $U$ we have $H^1(V, \mathcal{F}_1) = 0$ by Lemma 46.5.8. Since $F_1$ and $F_3$ are adequate functors by Lemma 46.5.2 we see that $F_2$ is adequate by Lemma 46.3.16. Thus $\mathcal{F}_2$ is adequate.

Let $\mathcal{I} \to \textit{Adeq}(\mathcal{O})$, $i \mapsto \mathcal{F}_ i$ be a diagram. Denote $\mathcal{F} = \mathop{\mathrm{colim}}\nolimits _ i \mathcal{F}_ i$ the colimit computed in $\textit{Mod}((\mathit{Sch}/S)_\tau , \mathcal{O})$. To prove (4) it suffices to show that $\mathcal{F}$ is adequate. Let $\mathcal{F}' = \mathop{\mathrm{colim}}\nolimits _ i \mathcal{F}_ i$ be the colimit computed in presheaves of $\mathcal{O}$-modules. Then $\mathcal{F} = (\mathcal{F}')^\# $. Let $U = \mathop{\mathrm{Spec}}(A)$ be an affine scheme over $S$. Let $F_ i = F_{\mathcal{F}_ i, A}$. By Lemma 46.3.12 the functor $\mathop{\mathrm{colim}}\nolimits _ i F_ i = F_{\mathcal{F}', A}$ is adequate. Lemma 46.5.10 shows that $\mathcal{F}$ is adequate. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 06VQ. Beware of the difference between the letter 'O' and the digit '0'.