The Stacks project

Lemma 46.3.12. Let $A$ be a ring. An arbitrary direct sum of adequate functors on $\textit{Alg}_ A$ is adequate. A colimit of adequate functors is adequate.

Proof. The statement on direct sums is immediate. A general colimit can be written as a kernel of a map between direct sums, see Categories, Lemma 4.14.12. Hence this follows from Lemma 46.3.11. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 06V4. Beware of the difference between the letter 'O' and the digit '0'.