The Stacks project

Lemma 101.23.7. Let $f : \mathcal{X} \to \mathcal{Y}$ be a morphism of algebraic stacks. The following are equivalent

  1. $f$ is locally quasi-finite,

  2. $f$ is quasi-DM and for any morphism $V \to \mathcal{Y}$ with $V$ an algebraic space and any locally quasi-finite morphism $U \to \mathcal{X} \times _\mathcal {Y} V$ where $U$ is an algebraic space the morphism $U \to V$ is locally quasi-finite,

  3. for any morphism $V \to \mathcal{Y}$ from an algebraic space $V$ there exists a surjective, flat, locally finitely presented, and locally quasi-finite morphism $U \to \mathcal{X} \times _\mathcal {Y} V$ where $U$ is an algebraic space such that $U \to V$ is locally quasi-finite,

  4. there exists algebraic spaces $U$, $V$, a surjective, flat, and locally of finite presentation morphism $V \to \mathcal{Y}$, and a morphism $U \to \mathcal{X} \times _\mathcal {Y} V$ which is surjective, flat, locally of finite presentation, and locally quasi-finite such that $U \to V$ is locally quasi-finite.

Proof. Assume (1). Then $f$ is quasi-DM by assumption. Let $V \to \mathcal{Y}$ and $U \to \mathcal{X} \times _\mathcal {Y} V$ be as in (2). By Lemma 101.23.5 the composition $U \to \mathcal{X} \times _\mathcal {Y} V \to V$ is locally quasi-finite. Thus (1) implies (2).

Assume (2). Let $V \to \mathcal{Y}$ be as in (3). By Lemma 101.23.6 we can find an algebraic space $U$ and a surjective, flat, locally finitely presented, locally quasi-finite morphism $U \to \mathcal{X} \times _\mathcal {Y} V$. By (2) the composition $U \to V$ is locally quasi-finite. Thus (2) implies (3).

It is immediate that (3) implies (4).

Assume (4). We will prove (1) holds, which finishes the proof. By Lemma 101.23.6 we see that $f$ is quasi-DM. To prove that $f$ is locally of finite type it suffices to prove that $g : \mathcal{X} \times _\mathcal {Y} V \to V$ is locally of finite type, see Lemma 101.17.6. Then it suffices to check that $g$ precomposed with $h : U \to \mathcal{X} \times _\mathcal {Y} V$ is locally of finite type, see Lemma 101.17.7. Since $g \circ h : U \to V$ was assumed to be locally quasi-finite this holds, hence $f$ is locally of finite type. Finally, let $k$ be a field and let $\mathop{\mathrm{Spec}}(k) \to \mathcal{Y}$ be a morphism. Then $V \times _\mathcal {Y} \mathop{\mathrm{Spec}}(k)$ is a nonempty algebraic space which is locally of finite presentation over $k$. Hence we can find a finite extension $k'/k$ and a morphism $\mathop{\mathrm{Spec}}(k') \to V$ such that

\[ \xymatrix{ \mathop{\mathrm{Spec}}(k') \ar[r] \ar[d] & V \ar[d] \\ \mathop{\mathrm{Spec}}(k) \ar[r] & \mathcal{Y} } \]

commutes (details omitted). Then $\mathcal{X}_{k'} \to \mathcal{X}_ k$ is representable (by schemes), surjective, and finite locally free. In particular $|\mathcal{X}_{k'}| \to |\mathcal{X}_ k|$ is surjective and open. Thus it suffices to prove that $|\mathcal{X}_{k'}|$ is discrete. Since

\[ U \times _ V \mathop{\mathrm{Spec}}(k') = U \times _{\mathcal{X} \times _\mathcal {Y} V} \mathcal{X}_{k'} \]

we see that $U \times _ V \mathop{\mathrm{Spec}}(k') \to \mathcal{X}_{k'}$ is surjective, flat, and locally of finite presentation (as a base change of $U \to \mathcal{X} \times _\mathcal {Y} V$). Hence $|U \times _ V \mathop{\mathrm{Spec}}(k')| \to |\mathcal{X}_{k'}|$ is surjective and open. Thus it suffices to show that $|U \times _ V \mathop{\mathrm{Spec}}(k')|$ is discrete. This follows from the fact that $U \to V$ is locally quasi-finite (either by our definition above or from the original definition for morphisms of algebraic spaces, via Morphisms of Spaces, Lemma 67.27.5). $\square$


Comments (2)

Comment #788 by Matthew Emerton on

In the statement of (4), ``locally of finitely presented'' should read ''locally of finite presentation'', I think.

There are also:

  • 5 comment(s) on Section 101.23: Locally quasi-finite morphisms

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 06UF. Beware of the difference between the letter 'O' and the digit '0'.