Lemma 101.28.5. Let
\[ \xymatrix{ \mathcal{X}' \ar[r] \ar[d] & \mathcal{X} \ar[d] \\ \mathcal{Y}' \ar[r] & \mathcal{Y} } \]
be a fibre product of algebraic stacks. If $\mathcal{Y}' \to \mathcal{Y}$ is surjective, flat, and locally of finite presentation and $\mathcal{X}'$ is a gerbe over $\mathcal{Y}'$, then $\mathcal{X}$ is a gerbe over $\mathcal{Y}$.
Comments (0)
There are also: