The Stacks project

Lemma 101.27.12. Let $\mathcal{X} \to \mathcal{Y} \to \mathcal{Z}$ be morphisms of algebraic stacks. If $\mathcal{X} \to \mathcal{Z}$ is locally of finite presentation and $\mathcal{X} \to \mathcal{Y}$ is surjective, flat, and locally of finite presentation, then $\mathcal{Y} \to \mathcal{Z}$ is locally of finite presentation.

Proof. Choose an algebraic space $W$ and a surjective smooth morphism $W \to \mathcal{Z}$. Choose an algebraic space $V$ and a surjective smooth morphism $V \to W \times _\mathcal {Z} \mathcal{Y}$. Choose an algebraic space $U$ and a surjective smooth morphism $U \to V \times _\mathcal {Y} \mathcal{X}$. We know that $U \to V$ is flat and locally of finite presentation and that $U \to W$ is locally of finite presentation. Also, as $\mathcal{X} \to \mathcal{Y}$ is surjective we see that $U \to V$ is surjective (as a composition of surjective morphisms). Hence the lemma reduces to the case of morphisms of algebraic spaces. The case of morphisms of algebraic spaces is Descent on Spaces, Lemma 74.16.1. $\square$


Comments (0)

There are also:

  • 2 comment(s) on Section 101.27: Morphisms of finite presentation

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 06Q9. Beware of the difference between the letter 'O' and the digit '0'.