The Stacks project

Definition 101.5.3. Let $f : \mathcal{X} \to \mathcal{Y}$ be a morphism of algebraic stacks. Let $Z$ be an algebraic space.

  1. Let $x : Z \to \mathcal{X}$ be a morphism. We set

    \[ \mathit{Isom}_{\mathcal{X}/\mathcal{Y}}(x, x) = Z \times _{x, \mathcal{X}} \mathcal{I}_{\mathcal{X}/\mathcal{Y}} \]

    We endow it with the structure of a group algebraic space over $Z$ by pulling back the composition law discussed in Remark 101.5.2. We will sometimes refer to $\mathit{Isom}_{\mathcal{X}/\mathcal{Y}}(x, x)$ as the relative sheaf of automorphisms of $x$.

  2. Let $x_1, x_2 : Z \to \mathcal{X}$ be morphisms. Set $y_ i = f \circ x_ i$. Let $\alpha : y_1 \to y_2$ be a $2$-morphism. Then $\alpha $ determines a morphism $\Delta ^\alpha : Z \to Z \times _{y_1, \mathcal{Y}, y_2} Z$ and we set

    \[ \mathit{Isom}_{\mathcal{X}/\mathcal{Y}}^\alpha (x_1, x_2) = (Z \times _{x_1, \mathcal{X}, x_2} Z) \times _{Z \times _{y_1, \mathcal{Y}, y_2} Z, \Delta ^\alpha } Z. \]

    We will sometimes refer to $\mathit{Isom}_{\mathcal{X}/\mathcal{Y}}^\alpha (x_1, x_2)$ as the relative sheaf of isomorphisms from $x_1$ to $x_2$.

If $\mathcal{Y} = \mathop{\mathrm{Spec}}(\mathbf{Z})$ or more generally when $\mathcal{Y}$ is an algebraic space, then we use the notation $\mathit{Isom}_\mathcal {X}(x, x)$ and $\mathit{Isom}_\mathcal {X}(x_1, x_2)$ and we use the terminology sheaf of automorphisms of $x$ and sheaf of isomorphisms from $x_1$ to $x_2$.


Comments (0)

There are also:

  • 2 comment(s) on Section 101.5: Inertia stacks

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 06PP. Beware of the difference between the letter 'O' and the digit '0'.