The Stacks project

Lemma 101.21.1. Let $\mathcal{X}$ be an algebraic stack. Consider a cartesian diagram

\[ \xymatrix{ U \ar[d] & F \ar[l]^ p \ar[d] \\ \mathcal{X} & \mathop{\mathrm{Spec}}(k) \ar[l] } \]

where $U$ is an algebraic space, $k$ is a field, and $U \to \mathcal{X}$ is flat and locally of finite presentation. Let $f_1, \ldots , f_ r \in \Gamma (U, \mathcal{O}_ U)$ and $z \in |F|$ such that $f_1, \ldots , f_ r$ map to a regular sequence in the local ring $\mathcal{O}_{F, \overline{z}}$. Then, after replacing $U$ by an open subspace containing $p(z)$, the morphism

\[ V(f_1, \ldots , f_ r) \longrightarrow \mathcal{X} \]

is flat and locally of finite presentation.

Proof. Choose a scheme $W$ and a surjective smooth morphism $W \to \mathcal{X}$. Choose an extension of fields $k'/k$ and a morphism $w : \mathop{\mathrm{Spec}}(k') \to W$ such that $\mathop{\mathrm{Spec}}(k') \to W \to \mathcal{X}$ is $2$-isomorphic to $\mathop{\mathrm{Spec}}(k') \to \mathop{\mathrm{Spec}}(k) \to \mathcal{X}$. This is possible as $W \to \mathcal{X}$ is surjective. Consider the commutative diagram

\[ \xymatrix{ U \ar[d] & U \times _\mathcal {X} W \ar[l]^-{\text{pr}_0} \ar[d] & F' \ar[l]^-{p'} \ar[d] \\ \mathcal{X} & W \ar[l] & \mathop{\mathrm{Spec}}(k') \ar[l] } \]

both of whose squares are cartesian. By our choice of $w$ we see that $F' = F \times _{\mathop{\mathrm{Spec}}(k)} \mathop{\mathrm{Spec}}(k')$. Thus $F' \to F$ is surjective and we can choose a point $z' \in |F'|$ mapping to $z$. Since $F' \to F$ is flat we see that $\mathcal{O}_{F, \overline{z}} \to \mathcal{O}_{F', \overline{z}'}$ is flat, see Morphisms of Spaces, Lemma 67.30.8. Hence $f_1, \ldots , f_ r$ map to a regular sequence in $\mathcal{O}_{F', \overline{z}'}$, see Algebra, Lemma 10.68.5. Note that $U \times _\mathcal {X} W \to W$ is a morphism of algebraic spaces which is flat and locally of finite presentation. Hence by More on Morphisms of Spaces, Lemma 76.28.1 we see that there exists an open subspace $U'$ of $U \times _\mathcal {X} W$ containing $p(z')$ such that the intersection $U' \cap (V(f_1, \ldots , f_ r) \times _\mathcal {X} W)$ is flat and locally of finite presentation over $W$. Note that $\text{pr}_0(U')$ is an open subspace of $U$ containing $p(z)$ as $\text{pr}_0$ is smooth hence open. Now we see that $U' \cap (V(f_1, \ldots , f_ r) \times _\mathcal {X} W) \to \mathcal{X}$ is flat and locally of finite presentation as the composition

\[ U' \cap (V(f_1, \ldots , f_ r) \times _\mathcal {X} W) \to W \to \mathcal{X}. \]

Hence Properties of Stacks, Lemma 100.3.5 implies $\text{pr}_0(U') \cap V(f_1, \ldots , f_ r) \to \mathcal{X}$ is flat and locally of finite presentation as desired. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 06MD. Beware of the difference between the letter 'O' and the digit '0'.