Lemma 10.139.2. Let $A \to B \to C$ be ring maps with $A \to C$ smooth and $B \to C$ surjective with kernel $J \subset B$. Then the exact sequence
\[ 0 \to J/J^2 \to \Omega _{B/A} \otimes _ B C \to \Omega _{C/A} \to 0 \]
of Lemma 10.131.9 is split exact.
Comments (0)