Lemma 37.62.7. A composition of local complete intersection morphisms is a local complete intersection morphism.
Proof. Let $g : Y \to S$ and $f : X \to Y$ be local complete intersection morphisms. Let $x \in X$ and set $y = f(x)$. Choose an open neighbourhood $V \subset Y$ of $y$ and a factorization $g|_ V = \pi \circ i$ for some Koszul-regular immersion $i : V \to P$ and smooth morphism $\pi : P \to S$. Next choose an open neighbourhood $U$ of $x \in X$ and a factorization $f|_ U = \pi ' \circ i'$ for some Koszul-regular immersion $i' : U \to P'$ and smooth morphism $\pi ' : P' \to Y$. In fact, we may assume that $P' = \mathbf{A}^ n_ V$, see discussion preceding and following Definition 37.62.2. Picture:
Set $P'' = \mathbf{A}^ n_ P$. Then $U \to P' \to P''$ is a Koszul-regular immersion as a composition of Koszul-regular immersions, namely $i'$ and the flat base change of $i$ via $P'' \to P$, see Divisors, Lemma 31.21.3 and Divisors, Lemma 31.21.7. Also $P'' \to P \to S$ is smooth as a composition of smooth morphisms, see Morphisms, Lemma 29.34.4. Hence we conclude that $X \to S$ is Koszul at $x$ as desired. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)
There are also: