Lemma 37.60.7. Let $f : X \to Y$ be a morphism of schemes pseudo-coherent over a base scheme $S$. Then $f$ is pseudo-coherent.
Proof. This translates into the following algebra result: If $R \to A \to B$ are composable ring maps and $R \to A$, $R \to B$ pseudo-coherent, then $R \to B$ is pseudo-coherent. This follows from More on Algebra, Lemma 15.81.15. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)