Lemma 76.7.11. Let $S$ be a scheme. Let $B$ be an algebraic space over $S$. Let $i : Z \to X$ be an immersion of algebraic spaces over $B$, and assume $i$ (étale locally) has a left inverse. Then the canonical sequence
\[ 0 \to \mathcal{C}_{Z/X} \to i^*\Omega _{X/B} \to \Omega _{Z/B} \to 0 \]
of Lemma 76.7.10 is (étale locally) split exact.
Proof.
Clarification: we claim that if $g : X \to Z$ is a left inverse of $i$ over $B$, then $i^*c_ g$ is a right inverse of the map $i^*\Omega _{X/B} \to \Omega _{Z/B}$. Having said this, the result follows from the corresponding result for morphisms of schemes by étale localization, see Lemmas 76.7.3 and 76.5.2.
$\square$
Comments (0)