The Stacks project

Lemma 76.5.2. Let $S$ be a scheme. Let $i : Z \to X$ be an immersion. Let $\varphi : U \to X$ be an étale morphism where $U$ is a scheme. Set $Z_ U = U \times _ X Z$ which is a locally closed subscheme of $U$. Then

\[ \mathcal{C}_{Z/X}|_{Z_ U} = \mathcal{C}_{Z_ U/U} \]

canonically and functorially in $U$.

Proof. Let $T \subset X$ be a closed subspace such that $i$ defines a closed immersion into $X \setminus T$. Let $\mathcal{I}$ be the quasi-coherent sheaf of ideals on $X \setminus T$ defining $Z$. Then the lemma just states that $\mathcal{I}|_{U \setminus \varphi ^{-1}(T)}$ is the sheaf of ideals of the immersion $Z_ U \to U \setminus \varphi ^{-1}(T)$. This is clear from the construction of $\mathcal{I}$ in Morphisms of Spaces, Lemma 67.13.1. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 04CO. Beware of the difference between the letter 'O' and the digit '0'.