Lemma 10.143.11. Consider a commutative diagram
with exact rows where $B' \to B$ and $A' \to A$ are surjective ring maps whose kernels are ideals of square zero. If $A \to B$ is étale, and $J = I \otimes _ A B$, then $A' \to B'$ is étale.
Lemma 10.143.11. Consider a commutative diagram
with exact rows where $B' \to B$ and $A' \to A$ are surjective ring maps whose kernels are ideals of square zero. If $A \to B$ is étale, and $J = I \otimes _ A B$, then $A' \to B'$ is étale.
Proof. By Lemma 10.143.10 there exists an étale ring map $A' \to C$ such that $C/IC = B$. Then $A' \to C$ is formally smooth (by Proposition 10.138.13) hence we get an $A'$-algebra map $\varphi : C \to B'$. Since $A' \to C$ is flat we have $I \otimes _ A B = I \otimes _ A C/IC = IC$. Hence the assumption that $J = I \otimes _ A B$ implies that $\varphi $ induces an isomorphism $IC \to J$ and an isomorphism $C/IC \to B'/IB'$, whence $\varphi $ is an isomorphism. $\square$
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)