Example 18.37.3. Let $G$ be a group. Consider the site $\mathcal{T}_ G$ and its point $p$, see Sites, Example 7.33.7. Let $R$ be a ring with a $G$-action which corresponds to a sheaf of rings $\mathcal{O}$ on $\mathcal{T}_ G$. Then $\mathcal{O}_ p = R$ where we forget the $G$-action. In this case $p^{-1}p_*M = \text{Map}(G, M)$ and $I(M) = \{ f : G \to M \mid f(1_ G) = 0\} $ and $M \to \text{Map}(G, M)$ assigns to $m \in M$ the constant function with value $m$.
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)