Lemma 10.126.5. Let $R$ be a ring. Let $\mathfrak p \subset R$ be a prime ideal. Let $M$ be an $R$-module.
If $M_{\mathfrak p}$ is a finite $R_{\mathfrak p}$-module then there exists a finite $R$-module $M'$ and a map $M' \to M$ which induces an isomorphism $M'_{\mathfrak p} \to M_{\mathfrak p}$.
If $M_{\mathfrak p}$ is a finitely presented $R_{\mathfrak p}$-module then there exists an $R$-module $M'$ of finite presentation and a map $M' \to M$ which induces an isomorphism $M'_{\mathfrak p} \to M_{\mathfrak p}$.
Comments (0)
There are also: