Definition 10.65.2. Let $R \to S$ be a ring map. Let $N$ be an $S$-module. The relative assassin of $N$ over $S/R$ is the set
\[ \text{Ass}_{S/R}(N) = \{ \mathfrak q \subset S \mid \mathfrak q \in \text{Ass}_ S(N \otimes _ R \kappa (\mathfrak p)) \text{ with }\mathfrak p = R \cap \mathfrak q\} . \]
This is the set named $A$ in Lemma 10.65.1.
Comments (0)