Definition 10.64.1. Let $R$ be a ring. Let $\mathfrak p$ be a prime ideal. For $n \geq 0$ the $n$th symbolic power of $\mathfrak p$ is the ideal $\mathfrak p^{(n)} = \mathop{\mathrm{Ker}}(R \to R_\mathfrak p/\mathfrak p^ nR_\mathfrak p)$.
10.64 Symbolic powers
Here is the definition.
Note that $\mathfrak p^ n \subset \mathfrak p^{(n)}$ but equality does not always hold.
Lemma 10.64.2. Let $R$ be a Noetherian ring. Let $\mathfrak p$ be a prime ideal. Let $n > 0$. Then $\text{Ass}(R/\mathfrak p^{(n)}) = \{ \mathfrak p\} $.
Proof. If $\mathfrak q$ is an associated prime of $R/\mathfrak p^{(n)}$ then clearly $\mathfrak p \subset \mathfrak q$. On the other hand, any element $x \in R$, $x \not\in \mathfrak p$ is a nonzerodivisor on $R/\mathfrak p^{(n)}$. Namely, if $y \in R$ and $xy \in \mathfrak p^{(n)} = R \cap \mathfrak p^ nR_{\mathfrak p}$ then $y \in \mathfrak p^ nR_{\mathfrak p}$, hence $y \in \mathfrak p^{(n)}$. Hence the lemma follows. $\square$
Lemma 10.64.3. Let $R \to S$ be flat ring map. Let $\mathfrak p \subset R$ be a prime such that $\mathfrak q = \mathfrak p S$ is a prime of $S$. Then $\mathfrak p^{(n)} S = \mathfrak q^{(n)}$.
Proof. Since $\mathfrak p^{(n)} = \mathop{\mathrm{Ker}}(R \to R_\mathfrak p/\mathfrak p^ nR_\mathfrak p)$ we see using flatness that $\mathfrak p^{(n)} S$ is the kernel of the map $S \to S_\mathfrak p/\mathfrak p^ nS_\mathfrak p$. On the other hand $\mathfrak q^{(n)}$ is the kernel of the map $S \to S_\mathfrak q/\mathfrak q^ nS_\mathfrak q = S_\mathfrak q/\mathfrak p^ nS_\mathfrak q$. Hence it suffices to show that
is injective. Observe that the right hand module is the localization of the left hand module by elements $f \in S$, $f \not\in \mathfrak q$. Thus it suffices to show these elements are nonzerodivisors on $S_\mathfrak p/\mathfrak p^ nS_\mathfrak p$. By flatness, the module $S_\mathfrak p/\mathfrak p^ nS_\mathfrak p$ has a finite filtration whose subquotients are
where $V$ is a $\kappa (\mathfrak p)$ vector space. Thus $f$ acts invertibly as desired. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)