Lemma 37.30.2. Let $f : X \to Y$ be a morphism of finite type. Let
\[ n_{X/Y} : Y \to \{ 0, 1, 2, 3, \ldots , \infty \} \]
be the function which associates to $y \in Y$ the dimension of $X_ y$. If $g : Y' \to Y$ is a morphism then
\[ n_{X'/Y'} = n_{X/Y} \circ g \]
where $X' \to Y'$ is the base change of $f$.
Comments (0)