Lemma 10.66.13. Let $\varphi : R \to S$ be a ring map. Let $M$ be an $S$-module. Denote $f : \mathop{\mathrm{Spec}}(S) \to \mathop{\mathrm{Spec}}(R)$ the associated map on spectra. If $\varphi $ is a finite ring map, then
Proof. One of the inclusions has already been proved, see Remark 10.66.12. To prove the other assume $\mathfrak q \in \text{WeakAss}_ S(M)$ and let $\mathfrak p$ be the corresponding prime of $R$. Let $m \in M$ be an element such that $\mathfrak q$ is a minimal prime over $J = \{ g \in S \mid gm = 0\} $. Thus the radical of $JS_{\mathfrak q}$ is $\mathfrak qS_{\mathfrak q}$. As $R \to S$ is finite there are finitely many primes $\mathfrak q = \mathfrak q_1, \mathfrak q_2, \ldots , \mathfrak q_ l$ over $\mathfrak p$, see Lemma 10.36.21. Pick $x \in \mathfrak q$ with $x \not\in \mathfrak q_ i$ for $i > 1$, see Lemma 10.15.2. By the above there exists an element $y \in S$, $y \not\in \mathfrak q$ and an integer $t > 0$ such that $y x^ t m = 0$. Thus the element $ym \in M$ is annihilated by $x^ t$, hence $ym$ maps to zero in $M_{\mathfrak q_ i}$, $i = 2, \ldots , l$. To be sure, $ym$ does not map to zero in $S_{\mathfrak q}$.
The ring $S_{\mathfrak p}$ is semi-local with maximal ideals $\mathfrak q_ i S_{\mathfrak p}$ by going up for finite ring maps, see Lemma 10.36.22. If $f \in \mathfrak pR_{\mathfrak p}$ then some power of $f$ ends up in $JS_{\mathfrak q}$ hence for some $t > 0$ we see that $f^ t ym$ maps to zero in $M_{\mathfrak q}$. As $ym$ vanishes at the other maximal ideals of $S_{\mathfrak p}$ we conclude that $f^ t ym$ is zero in $M_{\mathfrak p}$, see Lemma 10.23.1. In this way we see that $\mathfrak p$ is a minimal prime over the annihilator of $ym$ in $R$ and we win. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (2)
Comment #8807 by Branislav Sobot on
Comment #9280 by Stacks project on
There are also: