Lemma 10.93.1. Let $M$ be an $R$-module. If $M$ is flat, Mittag-Leffler, and countably generated, then $M$ is projective.
Proof. By Lazard's theorem (Theorem 10.81.4), we can write $M = \mathop{\mathrm{colim}}\nolimits _{i \in I} M_ i$ for a directed system of finite free $R$-modules $(M_ i, f_{ij})$ indexed by a set $I$. By Lemma 10.92.1, we may assume $I$ is countable. Now let
be an exact sequence of $R$-modules. We must show that applying $\mathop{\mathrm{Hom}}\nolimits _ R(M, -)$ preserves exactness. Since $M_ i$ is finite free,
is exact for each $i$. Since $M$ is Mittag-Leffler, $(\mathop{\mathrm{Hom}}\nolimits _ R(M_ i, N_{1}))$ is a Mittag-Leffler inverse system. So by Lemma 10.86.4,
is exact. But for any $R$-module $N$ there is a functorial isomorphism $\mathop{\mathrm{Hom}}\nolimits _ R(M, N) \cong \mathop{\mathrm{lim}}\nolimits _{i \in I} \mathop{\mathrm{Hom}}\nolimits _ R(M_ i, N)$, so
is exact. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)